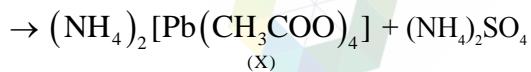
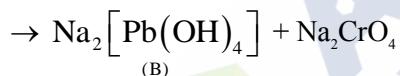


JEE-MAIN EXAMINATION – JANUARY 2026
(HELD ON WEDNESDAY 21st JANUARY 2026)
TIME : 9:00 AM TO 12:00 NOON
CHEMISTRY
TEST PAPER WITH SOLUTION
SECTION-A

51. Consider the following reactions.

(Hot solution)

In the above reactions, A, B and X are respectively.

- (1) $\text{Na}_2[\text{Pb}(\text{OH})_2]$, PbCrO_4 and $(\text{NH}_4)_2[\text{Pb}(\text{CH}_3\text{COO})_4]$
- (2) PbCrO_4 , $\text{Na}_2[\text{Pb}(\text{OH})_4]$ and $[\text{Pb}(\text{NH}_3)_4]\text{SO}_4$
- (3) $\text{Na}_2[\text{Pb}(\text{OH})_2]$, PbCrO_4 and $[\text{Pb}(\text{NH}_3)_4]\text{SO}_4$
- (4) PbCrO_4 , $\text{Na}_2[\text{Pb}(\text{OH})_4]$ and $(\text{NH}_4)_2[\text{Pb}(\text{CH}_3\text{COO})_4]$

Ans. (4)

52. Which of the following represents the correct trend for the mentioned property ?

- A. $\text{F} > \text{P} > \text{S} > \text{B}$ – First Ionization Energy
- B. $\text{Cl} > \text{F} > \text{S} > \text{P}$ – Electron Affinity
- C. $\text{K} > \text{Al} > \text{Mg} > \text{B}$ – Metallic character
- D. $\text{K}_2\text{O} > \text{Na}_2\text{O} > \text{MgO} > \text{Al}_2\text{O}_3$ – Basic character

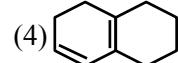
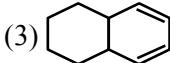
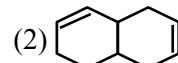
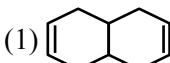
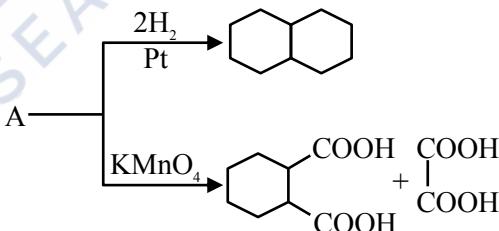
Choose the correct answer from the option given below.

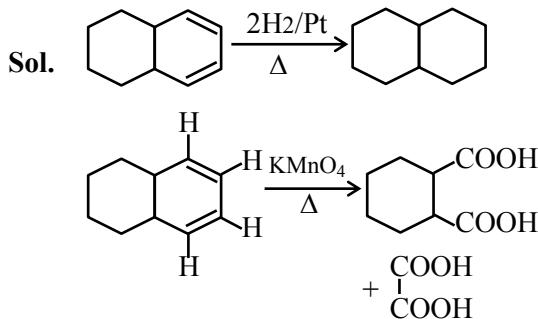
- (1) A, B and D only
- (2) A, B, C and D
- (3) A and B only
- (4) B and C only

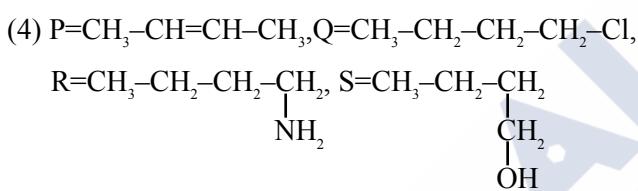
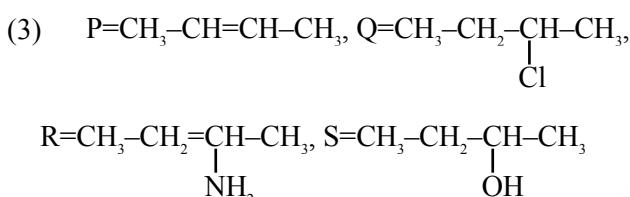
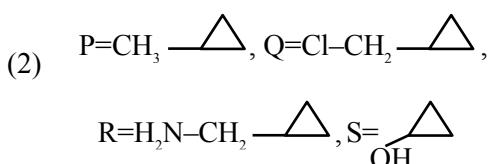
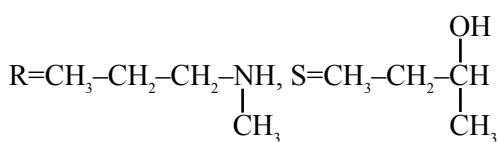
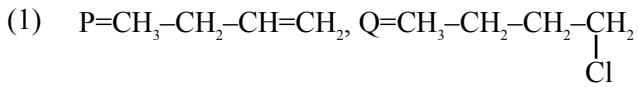
Ans. (1)

Sol. \Rightarrow On moving left to right in a period IE increases and from top to bottom in a group IE decreases.

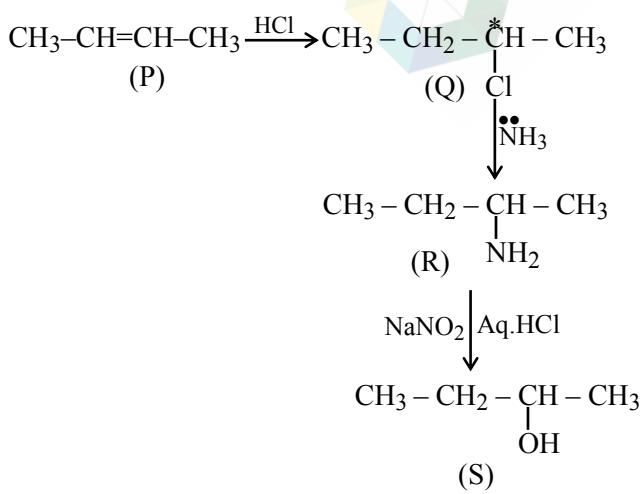
\Rightarrow On moving left to right in a period metallic and basic character decreases.






\Rightarrow On moving top to bottom in a group metallic and basic character increases.


\Rightarrow EA : Group 17 > Group 16 > Group 15






53. Identify A in the following reaction.

Ans. (3)



54. A hydrocarbon 'P' (C_4H_8) on reaction with HCl gives an optically active compound 'Q' (C_4H_9Cl) which on reaction with one mole of ammonia gives compound 'R' ($C_4H_{11}N$). 'R' on diazotization followed by hydrolysis gives 'S'. Identify P, Q, R and S.

Ans. (3)

Sol.

55. Given below are two statements :

Statement I : The number of pairs among $[\text{SiO}_2, \text{CO}_2]$, $[\text{SnO}, \text{SnO}_2]$, $[\text{PbO}, \text{PbO}_2]$ and $[\text{GeO}, \text{GeO}_2]$, which contain oxides that are both amphoteric is 2.

Statement II : BF_3 is an electron deficient molecule can act as a lewis acid, forms adduct with NH_3 and has a trigonal planar geometry.

In the light of the above statement, choose the correct answer from the option given below.

(1) Both **Statement I** and **Statement II** are true.

(2) Both **Statement I** and **Statement II** are false.

(3) **Statement I** is true but **Statement II** is false.

(4) **Statement I** is false **Statement II** is true.

Ans. (1)

Sol. \Rightarrow SiO_2 , CO_2 , GeO , GeO_2 are acidic in nature.
 SnO , SnO_2 , PbO , PbO_2 are amphoteric in nature.
 $\Rightarrow \text{BF}_3$ is lewis acid according to lewic octet theory and has sp^2 hybridization with trigonal planar geometry and it can accept lone pair from ammonia to form adduct.

56. 80 mL of a hydrocarbon on mixing with 264 mL of oxygen in a closed U-tube undergoes complete combustion. The residual gases after cooling to 273 K occupy 224 mL. When the system is treated with KOH solution, the volume decreases to 64 mL. The formula of the hydrocarbon is :

Ans. (3)

Sol.

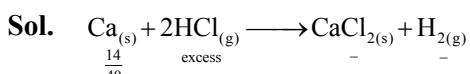
$$C_x H_{y(g)} + \left(x + \frac{y}{4} \right) O_{2(g)} \longrightarrow x CO_{2(g)} + \frac{y}{2} H_2 O_{(l)}$$

$t=0$	80	264	0	-
$t=t_{final}$	-	$264 - 80 \left(x + \frac{y}{4} \right)$	$80x$	-
$264 - 80 \left(x + \frac{y}{4} \right) + 80x = 224$				
$264 - \frac{80y}{4} = 224$				
$40 = \frac{80y}{4} \Rightarrow y = 2$				
$264 - 80 \left(x + \frac{y}{4} \right) = 64$				
$264 - 80 \left(x + \frac{1}{2} \right) = 64$				
$264 - 80x - 40 = 64$				
$x = 2$				

57. 14.0 g of calcium metal is allowed to react with excess HCl at 1.0 atm pressure and 273 K.

Which of the following statements is **incorrect**?

[Given : Molar mass in g mol⁻¹ of Ca=40, Cl=35.5, H=1]


(1) 0.35 mol of H₂ gas is evolved.

(2) 7.84 L of H₂ gas is evolved.

(3) 33.3 g of CaCl₂ is produced.

(4) The limiting reagent is calcium metal.

Ans. (3)

$$= 0.35 \text{ mole} \quad 0.35 \text{ mole} \quad 0.35 \text{ mole}$$

$$\text{Volume of H}_{2(g)} \text{ evolved} = 0.35 \times 22.4 = 7.84 \text{ L}$$

(3) is wrong because weight of CaCl₂ = $0.35 \times 111 = 38.85 \text{ gm}$

58. In Carius method, 0.75 g of an organic compound gave 1.2 g of barium sulphate, find percentage of sulphur (molar mass 32 g mol⁻¹). Molar mass of barium sulphate is 233 g mol⁻¹.

(1) 4.55%

(2) 10.30%

(3) 21.97%

(4) 16.48%

Ans. (3)

Sol. $\frac{n_{\text{BaSO}_4} \times 32}{W_{(\text{unknown comp.})}} \times 100$

$$= \frac{1.2 \times 32}{233} \times \frac{100}{0.75} = 21.97\%$$

59. Elements P and Q form two types of non-volatile, non-ionizable compounds PQ and PQ₂. When 1 g of PQ is dissolved in 50 g of solvent 'A', ΔT_b was 1.176 K while when 1 g of PQ₂ is dissolved in 50 g of solvent 'A', ΔT_b was 0.689 K. (K_b of 'A' = 5 K kg mol⁻¹). The molar masses of elements P and Q (in g mol⁻¹) respectively, are :

(1) 70, 110

(2) 65, 145

(3) 60, 25

(4) 25, 60

Ans. (4)

Sol. $(\Delta T_b)_{PQ} = K_b m$

$$1.176 = 5 \times \frac{1}{M_1} \times \frac{1000}{50}$$

$$M_1 = 85.03$$

$$(\Delta T_b)_{PQ_2} = 5 \times \frac{1}{M_2} \times \frac{1000}{50} = 0.689$$

$$M_2 = 145.13$$

Let molar mass of P & Q are M_p and M_Q respectively

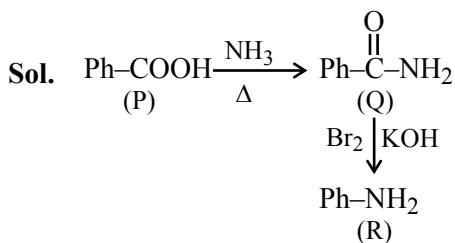
$$M_p + M_Q = 85.03$$

$$M_p + 2M_Q = 145.13$$

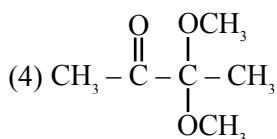
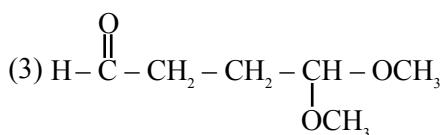
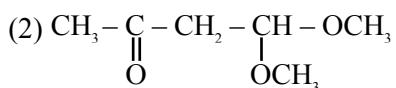
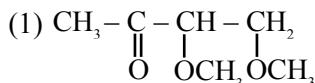
$$M_p = 24.93 \approx 25$$

$$M_Q = 60.1 \approx 60$$

60. An organic compound (P) on treatment with aqueous ammonia under hot condition forms compound (Q) which on heating with Br₂ and KOH forms compound (R) having molecular formula C₉H₇N. Names of P, Q and R respectively are.

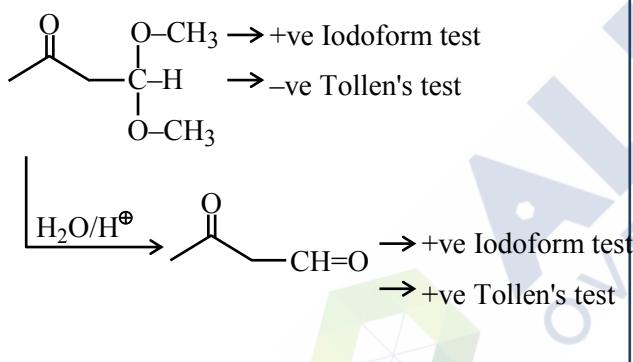

(1) Benzoic acid, benzamide, aniline

(2) Toluic acid, methylbenzamide, 2-methylaniline

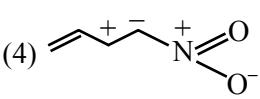
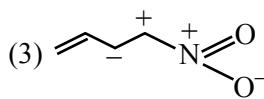
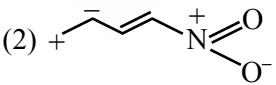
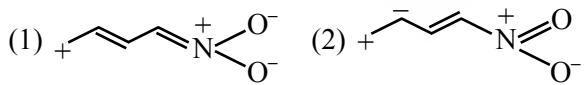




(3) Benzoic acid, 4-methylbenzamide, 4-methylaniline.

(4) Phenylethanoic acid, phenylethanamide, benzamine

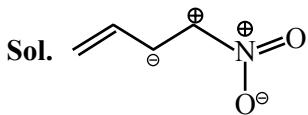
Ans. (1)



61. An organic compound "P" of molecular formula $C_6H_{12}O_3$ gives positive Iodoform test but negative Tollen's test. When "P" is treated with dilute acid, it produces "Q". "Q" gives positive Tollen's test and also Iodoform test. The structure of "P" is :

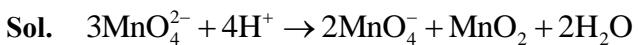





Ans. (2)


Sol.

62. From the following, the least stable structure is :

Ans. (3)



This resonating structure having +ve charge on adjacent atoms so it is least stable.

63. MnO_4^{2-} , in acidic medium, disproportionates to :

- Mn_2O_7 and MnO_2
- MnO_4^- and MnO
- MnO_4^- and MnO_2
- Mn_2O_7 and MnO

Ans. (3)

64. Given below are two statements:

Statement I: The number of species among SF_4 , NH_4^+ , $[\text{NiCl}_4]$, XeF_4 , $[\text{PtCl}_4]^{2-}$, SeF_4 and $[\text{Ni}(\text{CN})_4]^{2-}$, that have tetrahedral geometry is 3.

Statement II: In the set $[\text{NO}_2]$, BeH_2 , BF_3 , AlCl_3 , all the molecules have incomplete octet around central atom. In the light of the above statements, choose the correct answer from the options given below:

- Statement I** is true but **Statement II** is false
- Both **Statement I** and **Statement II** are false
- Statement I** is false but **Statement II** is true
- Both **Statement I** and **Statement II** are true

Ans. (3)

Sol. Statement-I

SF_4 (See-saw)

XeF_4 (square planar),

$[\text{PtCl}_4]^{2-}$ (square planar),

$[\text{NiCl}_4]^{2-}$ (Tetrahedral),

$[\text{Ni}(\text{CN})_4]^{2-}$ (square planar),

SeF_4 (See-saw)

NH_4^+ (Tetrahedral)

Statement-II

NO_2 (seven electrons on N)

BeH_2 (four electrons on Be)

BF_3 (six electrons on B)

AlCl_3 (six electrons on Al)

65. Given below are two statements:

Statement I: Among $[\text{Cu}(\text{NH}_3)_4]^{2+}$, $[\text{Ni}(\text{en})_3]^{2+}$, $[\text{Ni}(\text{NH}_3)_6]^{2+}$ and $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$, $[\text{Mn}(\text{H}_2\text{O})_6]^{2+}$, has the maximum number of unpaired electrons.

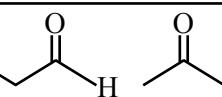
Statement II: The number of pairs among $\{\text{[NiCl}_4]^{2-}$, $[\text{Ni}(\text{CO})_4]\}$, $\{\text{[NiCl}_4]^{2-}$, $[\text{Ni}(\text{CN})_4]^{2-}$ and $[\text{Ni}(\text{CO})_4]$, $[\text{Ni}(\text{CN})_4]^{2-}\}$ that contain only diamagnetic species is two.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) **Statement I** is false but **Statement II** is true
- (2) Both **Statement I** and **Statement II** are true
- (3) Both **Statement I** and **Statement II** are false
- (4) **Statement I** is true but **Statement II** is false

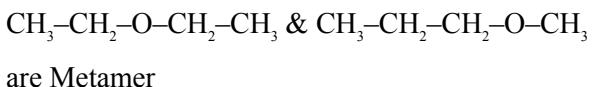
Ans. (4)

Sol. $[\text{Cu}(\text{NH}_3)_4]^{2+} \Rightarrow d^9$, $d\text{sp}^2$ one unpaired electron
 $[\text{Ni}(\text{en})_3]^{2+} \Rightarrow d^8$, sp^3d^2 two unpaired electrons
 $[\text{Ni}(\text{NH}_3)_6]^{2+} \Rightarrow d^8$, sp^3d^2 two unpaired electrons
 $[\text{Mn}(\text{H}_2\text{O})_6]^{2+} \Rightarrow d^5$, sp^3d^2 five unpaired electrons
 $[\text{Ni}(\text{CO})_4]$ (diamagnetic)
 $[\text{NiCl}_4]^{2-}$ (paramagnetic)
 $[\text{Ni}(\text{CN})_4]^{2-}$ (diamagnetic)

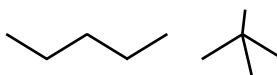

66. Identify correct statement from the following :

- A. Propanal and propanone are functional isomers.
- B. Ethoxyethane and methoxypropane are metamers.
- C. But-2-ene shows optical isomerism.
- D. But-1-ene and but-2-ene are functional isomers.
- E. Pentane and 2, 2-dimethyl propane are chain isomers.

Choose the **correct** answer from the options given below :


- (1) B, C and D only
- (2) A, B and C only
- (3) A, B and E only
- (4) C, D and E only

Ans. (3)


Sol. are Functional isomer

Are Positional isomer

$\text{CH}_3\text{--CH=CH--CH}_3$ does not have optical isomer

Chain isomer

67. Identify the correct statements.

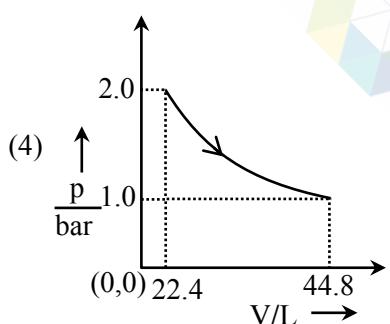
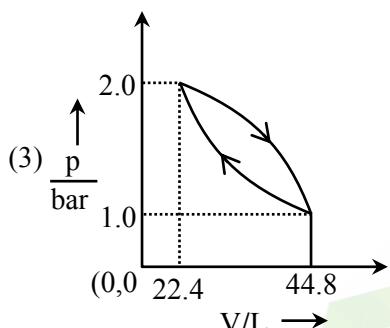
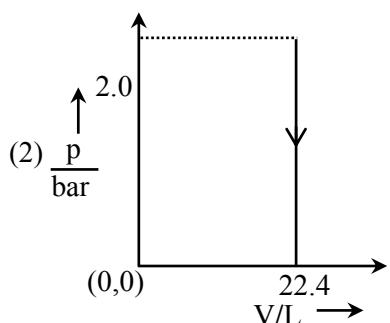
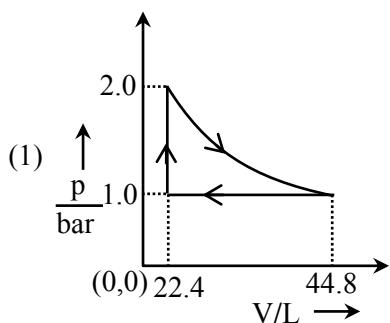
- A. Arginine and Tryptophan are essential amino acids.
- B. Histidine does not contain heterocyclic ring in its structure.
- C. Proline is a six membered cyclic ring amino acid.
- D. Glycine does not have chiral centre.
- E. Cysteine has characteristic feature of side chain as $\text{MeS--CH}_2\text{--CH}_2\text{--}$.

Choose the **correct** answer from the options given below:

Option

- (1) C and E Only
- (2) B and E Only
- (3) C and D Only
- (4) A and D Only

Ans. (4)





Sol. · Histidine does contain heterocyclic ring.

· Proline is a five membered cyclic ring amino acid.

· Cysteine has characteristic feature of side chain as $\text{CH}_2\text{--SMe}$

OVERSEAS

68. Which of the following graphs between pressure 'P' versus volume 'V' represent the maximum work done ?

Ans. (4)

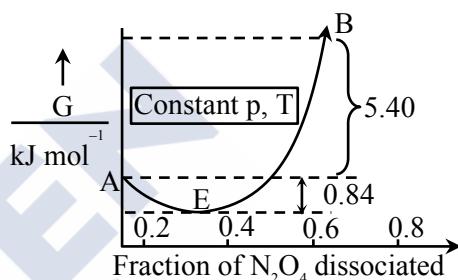
Sol. Area under the P v/s V curve, is equal to magnitude of work.

In option (2) work done is zero while in remaining options net work done is negative due to expansion.

NTA has given the answer without considering the negative sign that is considered only magnitude.

69. For the reaction, $\text{N}_2\text{O}_4 \rightleftharpoons 2\text{NO}_2$, graph is plotted as shown below. Identify correct statements.

A. Standard free energy change for the reaction is $-5.40 \text{ kJ mol}^{-1}$.

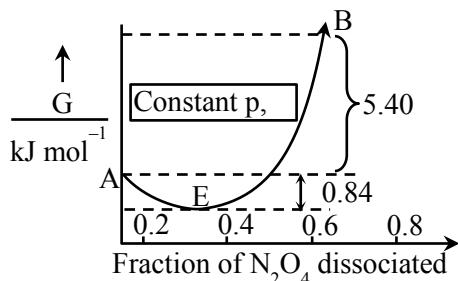

B. As ΔG^\ominus in graph is positive, N_2O_4 will not dissociate into NO_2 at all.

C. Reverse reaction will go to completion.

D. When 1 mole of N_2O_4 changes into equilibrium mixture, value of $\Delta G^\ominus = -0.84 \text{ kJ mol}^{-1}$

E. When 2 mole of NO_2 , changes into equilibrium mixture, ΔG^\ominus for equilibrium mixture is $-6.24 \text{ kJ mol}^{-1}$

E. When 2 mole of NO_2 , changes into equilibrium mixture, ΔG^\ominus for equilibrium mixture is $-6.24 \text{ kJ mol}^{-1}$.



Choose the **correct** answer from the options given below :

(1) D and E only (2) C and E only
(3) A and D only (4) B and C only

Ans. (1)

Sol.

(A) $\Delta_r G^\circ = G^\circ_B - G^\circ_A = +ve$

(B) $\Delta_r G^\circ = +ve$, N_2O_4 will partially dissociates into NO_2 .

(C) For reverse reaction
It is partially completed as there is equilibrium at E.

(D) For 1 mole N_2O_4 ; $\Delta_r G^\circ = -0.84 \text{ kJ mol}^{-1}$

(E) For 2 mole NO_2 ; $\Delta G^\circ = -5.4 - 0.84$
 $= -6.24 \text{ kJ mol}^{-1}$

70. Given below are two statements:

Statement I: When an electric discharge is passed through gaseous hydrogen, the hydrogen molecules dissociate and the energetically excited hydrogen atoms produce electromagnetic radiation of discrete frequencies.

Statement II: The frequency of second line of Balmer series obtained from He^+ is equal to that of first line of Lyman series obtained from hydrogen atom.

In the light of the above statements, choose the correct answer from the options given below:

- (1) Both **Statement I** and **Statement II** are true
- (2) Both **Statement I** and **Statement II** are false
- (3) **Statement I** is false but **Statement II** is true
- (4) **Statement I** is true but **Statement II** is false

Ans. (1)

$$\text{Sol. } \frac{1}{\lambda} = RZ^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

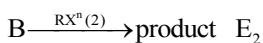
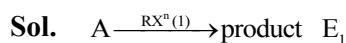
For 1st line of Lyman series in H-atom

$$\frac{1}{\lambda} = R(1)^2 \left(\frac{1}{1^2} - \frac{1}{2^2} \right)$$

$$\frac{1}{\lambda} = \frac{3R}{4}$$

for 2nd line of Balmer series of He^+

$$\frac{1}{\lambda'} = R(2)^2 \left(\frac{1}{2^2} - \frac{1}{4^2} \right)$$



$$\frac{1}{\lambda'} = \frac{3R}{4}$$

As λ and λ' are equal so frequency of these lines will be also equal.

SECTION-B

71. Pre-exponential factors of two different reactions of same order are identical. Let activation energy of first reaction exceeds the activation energy of second reaction by 20 kJ mol⁻¹. If k_1 and k_2 are the rate constants of first and second reaction respectively at 300 K, then $\ln \frac{k_2}{k_1}$ will be (nearest integer) [R=8.3 J K⁻¹ mol⁻¹]

Ans. (8)

Assuming 'A' same for both reaction.

$$\ln k_1 = \ln A - \frac{E_1}{300R}$$

$$\ln k_1 = \ln A - \frac{E_2}{300R}$$

$$\ln \left(\frac{k_2}{k_1} \right) = \frac{E_1 - E_2}{300R} = \frac{20 \times 1000}{300R}$$

$$= 8.032$$

72. The pH and conductance of a weak acid (HX) was found to be 5 and 4×10^{-5} S, respectively. The conductance was measured under standard condition using a cell where the electrode plates having a surface area of 1 cm² were at a distance of 15 cm apart. The value of the limiting molar conductivity is S m² mol⁻¹. (nearest integer) (Given: degree of dissociation of the weak acid (α) $\ll 1$)

Ans. (6)

Sol. pH = 5

$$[\text{H}^+] = 10^{-5} = [\text{HX}].\alpha$$

$$= [\text{HX}] \cdot \frac{\Lambda_m}{\Lambda_\infty}$$

$$\Lambda_m = \frac{k \times 1000}{[\text{HX}]}$$

$$K = G \cdot G^* = 4 \times 10^{-5} \times \frac{15}{1} = 6 \times 10^{-4} \text{ S.cm}^{-1}$$

$$[\text{H}^+] = 10^{-5} = [\text{HX}] \times \frac{6 \times 10^{-4} \times 1000}{\Lambda_\infty \times [\text{HX}]}$$

$$\Lambda_\infty = 60000 \text{ S.cm}^2 \text{ mol}^{-1}$$

$$\Lambda_\infty = 6 \text{ S.m}^2 \text{ mol}^{-1}$$

