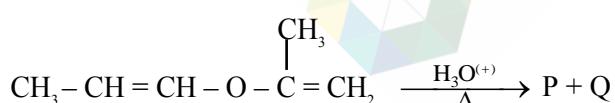
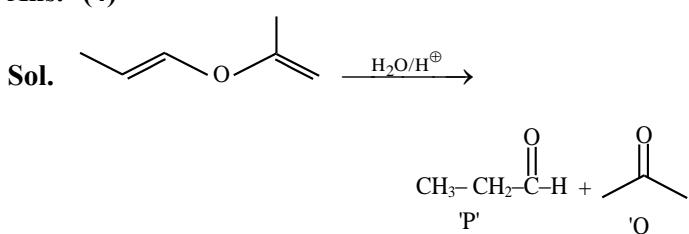


JEE-MAIN EXAMINATION – JANUARY 2026
(HELD ON SATURDAY 24th JANUARY 2026)
TIME : 3:00 PM TO 6:00 PM
CHEMISTRY
TEST PAPER WITH SOLUTION
SECTION-A
51. Choose the INCORRECT statement


- (1) Among the isotopes of carbon, ^{13}C is a radioactive isotope.
- (2) Carbon exhibits negative oxidation states along with +4 and +2.
- (3) Carbon cannot exceed its covalency more than four.
- (4) CO_2 is the most acidic oxide among the dioxides of group of 14 elements.

Ans. (1)
Sol. C^{13} is not radioactive


 C^{14} is radioactive

52. The unsaturated ether on acidic hydrolysis produces carbonyl compounds as shown below:-

Based on this, predict the solution / reagent that will help to distinguish "P" and "Q" obtained in the following reaction.

- (1) Lucas reagent
- (2) 2,4-DNP reagent
- (3) Saturated NaHSO_3 solution
- (4) Fehling solution

Ans. (4)

'P' and 'Q' can be differentiated by Fehling's test.

P gives positive Fehling test

Q gives negative Fehling test

53. The number of possible tripeptides formed involving alanine (ala), glycine (gly) and valine (val), where no amino acid has been used more than once is :

- (1) 6
- (2) 3
- (3) 4
- (4) 8

Ans. (1)
Sol. Gly ala val

Gly val ala

Val gly ala

Val ala gly

Ala val gly

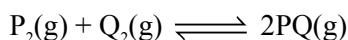
Ala gly val

Total tri peptides = 6

54. Two liquids A and B form an ideal solution at temperature T K. At T K, the vapour pressures of pure A and B are 55 and 15 kNm^{-2} respectively. What is the mole fraction of A in solution of A and B in equilibrium with a vapour in which the mole fraction of A is 0.8 ?

- (1) 0.5217
- (2) 0.480
- (3) 0.663
- (4) 0.340

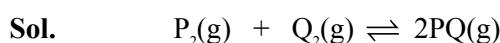
Ans. (1)


$$\frac{Y_A}{Y_B} = \frac{P_A^0}{P_B^0} \cdot \frac{X_A}{X_B}$$

$$\frac{0.8}{0.2} = \frac{55}{15} \times \frac{X_A}{X_B}$$

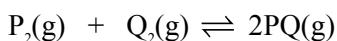
$$\frac{X_A}{X_B} = \frac{60}{55} = \frac{12}{11}$$

$$X_A = \frac{12}{23} = 0.5217$$


55. Consider the following gaseous equilibrium in a closed container of volume "V" at T(K).

2 moles each of $P_2(g)$, $Q_2(g)$ and $PQ(g)$ are present at equilibrium. Now one mole each of ' P_2 ' and ' Q_2 ' are added to the equilibrium keeping the temperature at T(K). The number of moles of P_2 , Q_2 and PQ at the new equilibrium, respectively, are -

(1) 2.67, 2.67, 2.67 (2) 1.21, 2.24, 1.56
 (3) 1.66, 1.66, 1.66 (4) 2.56, 1.62, 2.24


Ans. (1)

$$t = t_{eq} \quad 2 \text{ mole} \quad 2 \text{ mole} \quad 2 \text{ mole}$$

$$K_{eq} = \frac{2^2}{2.2} = 1$$

Now 1 mole of each P_2 and Q_2 is added
 So reaction will move in forward direction

$$t = t'_{eq} \quad 3 - x \quad 3 - x \quad 2 + 2x$$

$$K_c = 1 = \frac{(2 + 2x)^2}{(3 - x)(3 - x)}$$

$$\frac{2 + 2x}{3 - x} = 1$$

$$2 + 2x = 3 - x$$

$$x = \frac{1}{3}$$

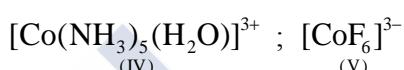
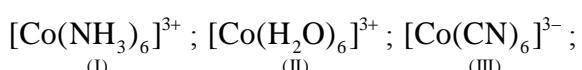
At new equilibrium :

$$\text{Moles of } P_2 = \frac{8}{3} = 2.67$$

$$\text{Moles of } Q_2 = \frac{8}{3} = 2.67$$

$$\text{Moles of } PQ = \frac{8}{3} = 2.67$$

56. Pair of species among the following having same bond order as well as paramagnetic character will be-



(1) O_2^+, N_2^{2-} (2) O_2^-, N_2^+
 (3) O_2^+, N_2^- (4) O_2^-, N_2^-

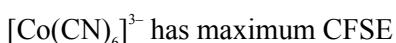
Ans. (3)

Sol.

Species	Bond order	Magnetic Nature
O_2^+	2.5	Paramagnetic
O_2^-	1.5	Paramagnetic
O_2^+	2.5	Paramagnetic
N_2^-	2.5	Paramagnetic
N_2^{2-}	2	Paramagnetic

57. The wavelength of light absorbed for the following complexes are in the order

$$(1) \text{III} < \text{I} < \text{II} < \text{IV} < \text{V}$$


$$(2) \text{III} < \text{I} < \text{IV} < \text{V} < \text{II}$$

$$(3) \text{III} < \text{IV} < \text{I} < \text{II} < \text{V}$$

$$(4) \text{III} < \text{I} < \text{IV} < \text{II} < \text{V}$$

Ans. (4)

Sol. Wavelength of light absorbed increases as C.F.S.E of complex decreases.

Ligand field strength \uparrow ; C.F.S.E \uparrow

Correct wavelength order.

$$\text{V} > \text{II} > \text{IV} > \text{I} > \text{III}$$

58. One mole of $\text{Cl}_2(g)$ was passed into 2 L of cold 2M KOH solution. After the reaction, the concentrations of Cl^- , ClO^- and OH^- are respectively (assume volume remains constant)

(1) 0.75 M, 0.75 M, 1 M
 (2) 0.5 M, 0.5 M, 0.5 M
 (3) 0.5 M, 0.5 M, 1 M
 (4) 1 M, 1 M, 1 M

Ans. (3)

Sol. $n_1 \rightarrow$ lower energy level

$n_2 \rightarrow$ higher energy level

$$n_1 + n_2 = 4, \quad n_2 = 3$$

$$n_2 - n_1 = 2, \quad n_1 = 1$$

Rydberg's formula :

$$\frac{1}{\lambda} = R_H Z^2 \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\frac{1}{\lambda} = R_H (3)^2 \left[\frac{1}{1^2} - \frac{1}{3^2} \right]$$

$$\frac{1}{\lambda} = 8R_H$$

$$\lambda = \frac{1}{8R_H}$$

$$\lambda = \frac{1}{8 \times 1.1 \times 10^5}$$

$$\lambda = \frac{1000}{8.8} \times 10^{-8} \text{ cm}$$

$$\lambda = 113.63 \times 10^{-8} \text{ cm}$$

$$\lambda \approx 1.14 \times 10^{-6} \text{ cm}$$

64. Given below are two statements :

Statement I : Cross aldol condensation between two different aldehydes will always produce four different products.

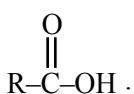
Statement II : When semicarbazide reacts with a mixture of benzaldehyde and acetophenone under optimum pH, it forms a condensation product with acetophenone only.

In the light of the above statements, choose the **correct** answer from the options given below :

- (1) Both Statement I and Statement II are false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II are true
- (4) Statement I is true but Statement II is false

Ans. (1)

Sol. **Statement I :** False

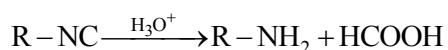

Cross aldol can give 2 or 4 products

Statement II : False

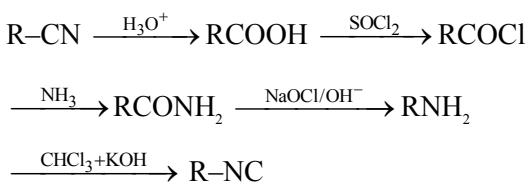
Benzaldehyde & Acetone both react with semi carbazide.

65. Given below are two statements :

Statement I : The dipole moment of R-CN is greater than R-NC and R-NC can undergo hydrolysis under acidic medium to produce


Statement II : R-CN hydrolyses under acidic medium to produce a compound which on treatment with SOCl_2 , followed by the addition of NH_3 gives another compound(x). This compound (x) on treatment with NaOCl/NaOH gives a product, that on treatment with $\text{CHCl}_3/\text{KOH}/\Delta$ produces R-NC

In the light of the above statements, choose the **correct** answer from the options given below :


- (1) Both Statement I and Statement II are false
- (2) Both Statement I and Statement II are true
- (3) Statement I is true but Statement II is false
- (4) Statement I is false but Statement II is true

Ans. (4)

Sol. **Statement I :** False

Statement II : True

