

Ans. (3)

$$B = \frac{\mu_0}{4\pi} \times \frac{I}{d} [\sin 60^\circ + \sin 60^\circ] \times 3$$

$$B = 10^{-7} \times \frac{2}{2 \times 10^{-2}} \left(\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \right) \times 3$$

$$= \sqrt{3} \times 10^{-5} \times 3 = 3\sqrt{3} \times 10^{-5}$$

Ans. (2)

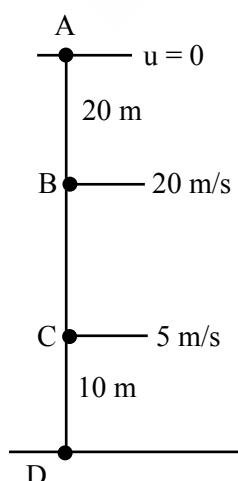
Sol. A to B

$$x_1 = \frac{1}{2} \times 10 \times 2^2 = 20 \text{ m}$$

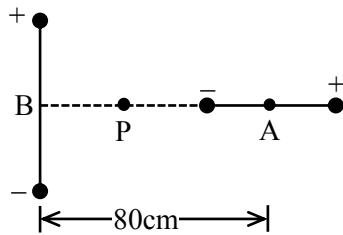
B to C

$$5^2 = 20^2 - 2(3)x$$

375

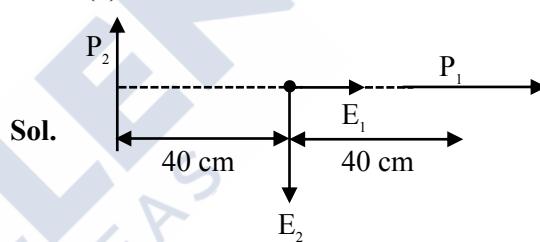

$$x_2 = \frac{575}{6}$$

$$x_2 = 62.5$$


C to D

$$x_3 = 10m$$

$$H = x_1 + x_2 + x_3 = 92.5$$



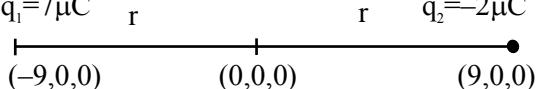
31. Two short dipoles (A, B), A having charges $\pm 2\mu\text{C}$ and length 1 cm and B having charges $\pm 4\mu\text{C}$ and length 1 cm are placed with their centres 80 cm apart as shown in the figure. The electric field at a point P , equi-distant from the centres of both dipoles is _____ N/C.

(1) $\frac{9}{16}\sqrt{2} \times 10^5$ (2) $4.5\sqrt{2} \times 10^4$
 (3) $9\sqrt{2} \times 10^4$ (4) $\frac{9}{16}\sqrt{2} \times 10^4$

Ans. (4)

$$\vec{E}_2 = -\frac{K P_2}{r^3}; \quad \vec{E}_1 = -\frac{2 K P_1}{r^3}$$

$$P_1 = 2 \times 10^{-6} \times 10^{-2} = 2 \times 10^{-8}$$


$$P_2 = 4 \times 10^{-6} \times 10^{-2} = 4 \times 10^{-8}$$

$$\vec{E}_{\text{net}} \hat{i} - \frac{2 \times 9 \times 10^9 \times 2 \times 10^{-8}}{r^2} \hat{i} - \frac{9 \times 10^9 \times 4 \times 10^{-8}}{r^2} \hat{j}$$

$$\vec{E}_{\text{net}} = \frac{9 \times 10^9 \times 4 \times 10^{-8}}{(0.4)^3} [\hat{i} - \hat{j}]$$

$$|\vec{E}_{\text{net}}| = \frac{9 \times 10^4}{16} (\sqrt{2})$$

Ans. (3)

Sol. $q_1 = 7\mu C$ r $q_2 = 2\mu C$

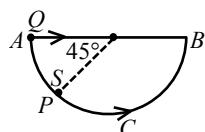
$$dV = -\vec{E} \cdot d\vec{r}$$

$$\int_0^r dV = - \int_{\infty}^r \frac{A}{r^2} dr$$

$$V = - \left[\frac{-A}{r^2} \right]_{\infty}^r \Rightarrow V = \frac{A}{r}$$

$$U = U_{\text{self}} + U_{\text{interaction}}$$

$$= q_1 v_1 = q_2 v_2 + \frac{k q_1 q_2}{2r}$$


$$= 7 \times 10^{-6} \frac{A}{9 \times 10^{-2}} - 2 \times 10^{-6} \frac{A}{9 \times 10^{-2}} \\ - \frac{9 \times 10^9 \times 14 \times 10^{-12}}{2 \times 9 \times 10^{-2}}$$

$$= \frac{5 \times 10^{-6} \times 9 \times 10^5}{9 \times 10^{-2}} - 7 \times 10^{-1}$$

$$= 50 - 0.7$$

$$= 49.3 \text{ J}$$

33. A bead P sliding on a frictionless semi-circular string (ACB) and it is at point S at $t = 0$ and at this instant the horizontal component of its velocity is v . Another bead Q of the same mass as P is ejected from point A at $t = 0$ along the horizontal string AB , with the speed v , friction between the beads and the respective strings may be neglected in both cases. Let t_p and t_Q be the respective times taken by beads P and Q to reach the point B , then the relation between t_p and t_Q is

$$(1) t_p > t_Q$$

$$(2) t_p < t_Q$$

$$(3) t_p > 1.25 t_Q$$

$$(4) t_p = t_Q$$

Ans. (2)

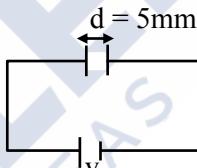
Sol. Horizontal displacement of Q is more than P .
 $X_Q > X_p$

Horizontal component of velocity is same

$$\text{So } t_p = \frac{X_p}{v}$$

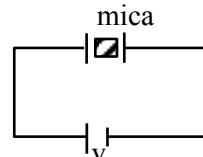
$$t_Q = \frac{X_Q}{v}$$

$$t_Q > t_p$$

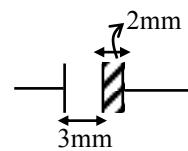

34. A parallel plate capacitor with plate separation 5 mm is charged by a battery. On introducing a mica sheet of 2 mm and maintaining the connections of the plates with the terminals of the battery, it is found that it draws 25% more charge from the battery. The dielectric constant of mica is ____.

$$(1) 2.5 \quad (2) 2.0$$

$$(3) 1.5 \quad (4) 1.0$$


Ans. (2)

Sol.


$$C = \frac{\epsilon_0 A}{d}$$

$$Q_1 = CV$$

$$Q_2 = (C_{eq})V$$

$$Q_2 = 1.25 CV$$

$$C_{eq} = \frac{C_1 C_2}{C_1 + C_2} = \frac{\frac{\epsilon_0 A}{3} \times \frac{K \epsilon_0 A}{2}}{\frac{\epsilon_0 A}{3} + \frac{K \epsilon_0 A}{2}}$$

50. The velocity of sound in air is doubled when the temperature is raised from 0°C to $\alpha^{\circ}\text{C}$. The value of α is _____.

Ans. (819)

Sol. $V = \sqrt{\frac{\gamma RT}{M}}$

$$\frac{V_1}{V_2} = \frac{\sqrt{T_1}}{\sqrt{T_2}}$$

$$\frac{V_0}{2V_0} = \sqrt{\frac{273}{T_2}}$$

$$\frac{1}{4} = \frac{273}{T_2}$$

$$T_2 = 4 \times 273 = \alpha + 273$$

$$\alpha = 3 \times 273$$

$$\alpha = 819^{\circ}\text{C}$$

