

JEE-Main Examination – January 2026

(HELD ON WEDNESDAY 28th JANUARY 2026)

TIME : 9:00 AM TO 12:00 NOON

PHYSICS

TEST PAPER WITH SOLUTION

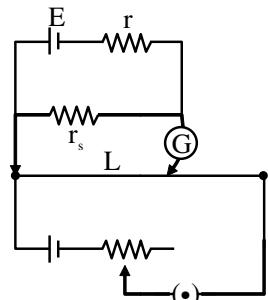
SECTION-A

Ans. (1)

$$\begin{aligned}
 \text{Sol. } & 10 \times 3.36 \times 10^5 + 10 \times 2100 \times 10 + 10 \times 4200 \times (T-0) \\
 & = 100 \times 4200 \times (25 - T) \\
 & \Rightarrow T = 15^\circ\text{C} \\
 & \Delta T = 25 - 15 = 10^\circ\text{C}
 \end{aligned}$$

27. The electric current in the circuit is given as $i = i_0(t/T)$. The r.m.s current for the period $t = 0$ to $t = T$ is _____

(1) $\frac{i_0}{\sqrt{2}}$ (2) i_0
 (3) $\frac{i_0}{\sqrt{6}}$ (4) $\frac{i_0}{\sqrt{3}}$


Ans. (4)

$$\text{Sol. } i_{\text{rms}}^2 = \frac{\int_0^T (i_0^2 t^2 / T^2) dt}{\int_0^T dt} = \frac{i_0^2}{T^3} \cdot \frac{T^3}{3} = \frac{i_0^2}{3}$$

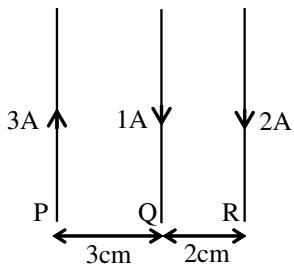
$$i_{rms} = \frac{i_0}{\sqrt{3}}$$

Ans. (2)

Sol. Let E is emf and r is internal resistance of cell.

$$\frac{E \cdot 4}{r + 4} = 120 \text{ K}$$

$$\frac{E \cdot 12}{r + 12} = 180 \text{ K}$$


$$\Rightarrow \frac{1}{3} \frac{r+12}{r+4} = \frac{2}{3}$$

$$r + 12 = 2(r + 4)$$

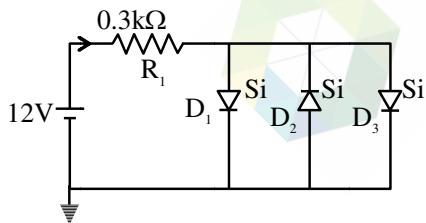
$$\Rightarrow r = 4$$

34. Three long straight wires carrying current are arranged mutually parallel as shown in the figure. The force experienced by 15 cm length of wire Q is _____.

$$(\mu_0 = 4\pi \times 10^{-7} \text{ T.m/A})$$

(1) 6×10^{-7} N towards P
 (2) 6×10^{-6} N towards R
 (3) 6×10^{-7} N towards R
 (4) 6×10^{-6} N towards P

Ans. (2)


$$\text{Sol. } F_{\text{net}} = \frac{\mu_0}{2\pi} I_0 \left(\frac{I_1}{d_1} + \frac{I_2}{d_2} \right) \ell$$

$$F_{\text{net}} = 2 \times 10^{-7} \times 1 \left(\frac{3}{3} + \frac{2}{2} \right) \times \frac{15 \times 10^{-2}}{10^{-2}}$$

$$= 4 \times 15 \times 10^{-7}$$

$$F_{\text{net}} = 6 \times 10^{-6} \text{ N}$$

35. Assuming in forward bias condition there is a voltage drop of 0.7 V across a silicon diode, the current through diode D_1 in the circuit is _____ mA. (Assume all diodes in the given circuit are identical)

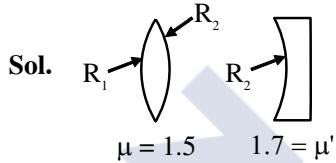
(1) 20.15
 (2) 11.7
 (3) 17.6
 (4) 18.8

Ans. (4)

$$\text{Sol. } 12 - 0.3 \times 10^3 I - 0.7 = 0$$

$$\frac{11.3}{0.3 \times 10^3} = I$$

$$37.66 \times 10^{-3} \text{ A} = I$$

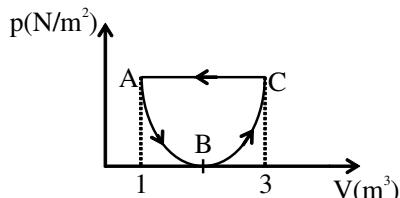

Current through diode D_1 , $I_1 = I/2$

$$I_1 = 18.83 \text{ mA}$$

36. The magnitudes of power of a biconvex lens (refractive index 1.5) and that of a plano-concave lens (refractive index = 1.7) are same. If the curvature of plano-concave lens exactly matches with the curvature of back surface of the biconvex lens, then ratio of radius of curvature of front and back surface of the biconvex lens is _____.

(1) 5 : 2
 (2) 5 : 12
 (3) 12 : 5
 (4) 2 : 5

Ans. (1)


$$|P_A| = |P_B|$$

$$0.5 \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = \frac{0.7}{R_2}$$

$$\frac{5}{R_1} = \frac{2}{R_2}$$

$$\frac{R_1}{R_2} = \frac{5}{2}$$

37. In the following p - V diagram the equation of state along the curved path is given by $(V - 2)^2 = 4ap$ where a is a constant. The total work done in the closed path is

(1) $-\frac{1}{a}$
 (2) $+\frac{1}{3a}$
 (3) $\frac{1}{2a}$
 (4) $-\frac{1}{3a}$

Ans. (4)

Sol. Increasing the slit width 'a' decreases the diffraction angle ($\theta = \lambda/a$) and reduces the spreading of the wave. A narrower slit produces a more pronounced spherical wave (high curvature) while a wider slit leads to a flatter, less curved wave.

Ans. (2)

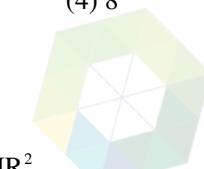
Sol. Reading = MSR + (VSR \times LC) – (zero Error)
 $= 15 \text{ mm} + (5 \times 0.1 \text{ mm}) - (4 \times 0.1 \text{ mm})$
 Reading = 15.1 mm

$$\therefore \boxed{\ell = 15.1 \text{ mm}}$$

43. The magnetic field at the centre of a current carrying circular loop of radius R is $16 \mu\text{T}$. The magnetic field at a distance $x = \sqrt{3}R$ on its axis from the centre is _____ μT .

(1) $2\sqrt{2}$ (2) 4
 (3) 2 (4) 8

Ans. (3)

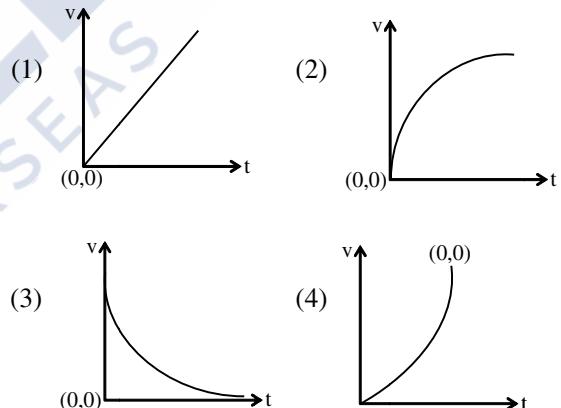

$$\text{Sol. } \frac{\mu_0 I}{2R} = 16 \mu\text{T}$$

$$\frac{\mu_0 IR^2}{2(x^2 + R^2)^{3/2}} = \frac{\mu_0 IR^2}{2 \times 8R^3} = 2\mu T$$

44. Two point charges of 1 nC and 2 nC are placed at the two corners of equilateral triangle of side 3 cm . The work done in bringing a charge of 3 nC from infinity to the third corner of the triangle is _____ μJ .

$$\frac{1}{4\pi\epsilon_0} = 9 \times 10^9 \text{ N.m}^2 / \text{C}^2$$

Ans. (1)



$$W = \left(\frac{kq_1}{\ell} + \frac{kq_2}{\ell} \right) q_3$$

$$= \frac{9 \times 10^9}{3 \times 10^{-2}} (3 \times 10^{-9}) \times 3 \times 10^{-9}$$

$$= 27 \times 10^{-7} \text{ J} = 2.7 \text{ } \mu\text{J}$$

45. A particle of mass m falls from rest through a resistive medium having resistive force, $F = -kv$, where v is the velocity of the particle and k is a constant. Which of the following graphs represents velocity (v) versus time(t) ?

Ans. (2)

$$\text{Sol. } m \cdot \frac{dv}{dt} = mg - kv$$

$$\int_0^V \frac{dv}{mg - kv} = \int_0^t \frac{dt}{m}$$

$$\frac{-1}{k} \ln \left(\frac{mg - kv}{mg} \right) = \frac{t}{m}$$

$$v = \frac{mg}{k} \left(1 - e^{-kt/m} \right)$$

SECTION-B

46. The displacement of a particle, executing simple harmonic motion with time period T , is expressed as $x(t) = A \sin \omega t$, where A is the amplitude. The maximum value of potential energy of this oscillator is found at $t = T/2\beta$. The value of β is _____.

Ans. (2)

Sol. Potential energy is maximum at extreme position
The particle starting at mean position reaches extreme position in time $\frac{T}{4}$.

47. The ratio of de Broglie wavelength of a deuteron with kinetic energy E to that of an alpha particle with kinetic energy $2E$, is $n : 1$. The value of n is _____.

(Assume mass of proton = mass of neutron) :

Ans. (2)

Sol. $\lambda = \frac{h}{mv} = \frac{h}{\sqrt{2m \cdot KE}}$

$$\frac{\lambda_d}{\lambda_\alpha} = \sqrt{\frac{m_\alpha \cdot KE_\alpha}{m_d \cdot KE_d}} = \sqrt{\frac{4m \cdot 2E}{2m \cdot E}} = 2 : 1$$

48. A solid sphere of radius 10 cm is rotating about an axis which is at a distance 15 cm from its centre. The radius of gyration about this axis is \sqrt{n} cm. The value of n is

Ans. (265)

Sol. Let radius of gyration is k

$$\Rightarrow mk^2 = \frac{2}{3}mR^2 + md^2$$

$$k^2 = \frac{2}{3} \times 10^2 + 15^2 = 265$$

$$(\sqrt{n})^2 = 265 \Rightarrow n = 265$$

49. A convex lens of refractive index 1.5 and focal length $f = 18$ cm is immersed in water. The difference in focal lengths of the given lens when it is in water and in air is $\alpha \times f$. The value of α is _____.

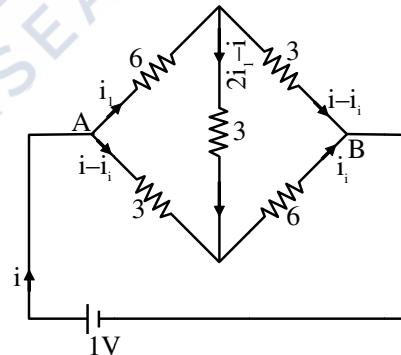
(refractive index of water = 4/3)

Ans. (3)

Sol. $\frac{1}{f_{\text{Air}}} = \left(\frac{1.5 - 1}{1} \right) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$

$$\frac{1}{f_{\text{water}}} = \left(\frac{1.5 - 4/3}{4/3} \right) \left(\frac{1}{R_1} + \frac{1}{R_2} \right)$$

$$\Rightarrow \frac{f_{\text{water}}}{f_{\text{air}}} = \frac{0.5}{0.5/4} = 4$$


$$\Rightarrow f_{\text{water}} - f_{\text{air}} = 3f$$

50. The equivalent resistance between the points A and B in the following circuit is $\frac{x}{5} \Omega$. The value of x is _____.

Ans. (21)

Sol.

$$6i_1 + 3(2i_1 - i) = 3(i - i_1)$$

$$\Rightarrow 15i_1 = 6i \Rightarrow i_1 = \frac{2}{5}i \quad \text{--- (1)}$$

$$3(i - i_1) + 6i_1 = 1$$

$$3i + 3i_1 = 1$$

$$\left(3 + \frac{6}{5} \right) i = 1$$

$$\Rightarrow i = \frac{5}{21}A = \frac{1V}{R_{\text{eq}}} \Rightarrow R_{\text{eq}} = \frac{21}{5} \Omega$$