JEE-MAIN EXAMINATION - APRIL 2025

(HELD ON THURSDAY 03rd APRIL 2025)

TIME : 3:00 PM TO 6:00 PM

 $HCl \rightarrow NaCl + H_2O$

 $MV = 1 \times 0.2$

= 0.2 mole

CHEMISTRY

SECTION-A

51. 40 mL of a mixture of CH₃COOH and HCl (aqueous solution) is titrated against 0.1 M NaOH solution conductometrically. Which of the following statement is **correct**?

- (1) The concentration of CH_3COOH in the original mixture is 0.005 M
- (2) The concentration of HCl in the original mixture is 0.005 M
- (3) CH₃COOH is neutralised first followed by neutralisation of HCl
- (4) Point 'C' indicates the complete neutralisation HCl

Ans. (2)

- **Sol.** From the given graph 2 ml NaOH solution is used for neutralisation of HCl and 3 ml NaOH solution is used for neutralisation of CH₃COOH.
 - \therefore Mole of HCl = Mole of NaOH used
 - $M \times 40 = 0.1 \times 2$
 - M = 0.005
 - $\therefore \text{ Mole of CH}_3\text{COOH} = \text{Mole of NaOaH used}$ $M \times 40 = 0.1 \times 3$ M = 0.0075

HCl is strong acid and will be neutralised first.

52. 10 mL of 2 M NaOH solution is added to 20 mL of 1 M HCl solution kept in a beaker. Now, 10 mL of this mixture is poured into a volumetric flask of 100 mL containing 2 moles of HCl and made the

TEST PAPER WITH SOLUTION

volume upto the mark with distilled water. The solution in this flask is :

- (1) 0.2 M NaCl solution
- (2) 20 M HCl solution
- (3) 10 M HCl solution
- (4) Neutral solution

Ans. (2)

Sol. When 10 ml, 2M NaOH solution is added to 20 ml of 1M HCl solution :

NaOH

Initial : $MV = 2 \times 0.1$

0

= 0.2 mole

Final

... Resulting solution becomes neutral.

Now when 10 mol of above solution is poured into a flask containing 2 mole HCl and made solution 100 ml will distilled water.

0

Molarity of HCl = $\frac{2}{100} \times 1000 = 20$

- **53.** Fat soluble vitamins are :
 - A. Vitamin B₁
 - B. Vitamin C
 - C. Vitamin E
 - D. Vitamin B₁₂
 - E. Vitamin K

Choose the *correct* answer from the options given below :

(1) C & D Only	(2) A & B Only
(3) B & C Only	(4) C & E Only

Ans. (4)

Sol. Vit D, E, K. A are fat soluble vitamins.

54. Match the LIST-I with LIST-II.

LIST-I (Family)		LIST-II (Symbol of Element)		
A.	Pnicogen (group 15)	I.	Ts	
B.	Chalcogen	II.	Og	
C.	Halogen	III.	Lv	
D.	Noble gas	IV.	Mc	

Choose the *correct* answer from the options given below :

(1) A-IV, B-I, C-II, D-III

- (2) A-IV, B-III, C-I, D-II
- (3) A-III, B-I, C-IV, D-II
- (4) A-II, B-III, C-IV, D-I

Ans. (2)

Sol. (A) Pnictogen \Rightarrow Mc (Moscovium),

- (B) Chalcogen \Rightarrow Lv (Livermorium),
 - Atomic No. = 116
- (C) Halogen \Rightarrow Ts (Tennessine),
 - Atomic No. = 117
- (D) Noble gas \Rightarrow Og (Oganesson),

Atomic No. = 118

55. For electron in '2s' and '2p' orbitals, the orbital angular momentum values, respectively are :

(1)
$$\sqrt{2} \frac{h}{2\pi}$$
 and 0
(2) $\frac{h}{2\pi}$ and $\sqrt{2} \frac{h}{2\pi}$
(3) 0 and $\sqrt{6} \frac{h}{2\pi}$
(4) 0 and $\sqrt{2} \frac{h}{2\pi}$

Ans. (4)

- **Sol.** Orbital angular momentum = $\sqrt{\ell(\ell+1)} \frac{h}{2\pi}$
 - $\therefore \quad \text{For 2s orbital} : \ell = 0$

Orbital angular momentum = 0

 $\therefore \quad \text{For 2p orbital} \ : \ \ell = 1$

Orbital angular momentum = $\sqrt{1(1+2)} \frac{h}{2\pi}$

 $=\sqrt{2}\frac{h}{2\pi}$

- 56. Compounds that should not be used as primary standards in titrimetric analysis are :A. Na₂Cr₂O₇
 - B. Oxalic acid
 - C. NaOH

D. FeSO₄ . 6H₂O

E. Sodium tetraborate

Choose the *most appropriate* answer from the options given below:

- (1) B and D Only (2) D and E Only
- (3) C, D and E Only (4) A, C and D Only

Ans. (4)

Sol. The primary standard is a highly pure stable compound with a known exact composition that can be accurately weighed and dissolved to creat a solution of known concentration.

NaOH is hygroscopic and can't be used.

 $FeSO_4.6H_2O$ is unstable and can be easily oxidised. Na₂Cr₂O₇ is hygroscopic and can't be used.

57. The major product (P) in the following reaction is :

$$Ph - C - C - H \xrightarrow{KOH} P$$

$$Major product$$

$$(1) Ph - CH - CH_2OH$$
(2) $Ph - CH - COO^{-}K^{+}$

(3)
$$Ph - C - COO^{-}K^{+}$$
 (4) $Ph - C - CH_2OH$
 II
 O
 O

Ans. (2)

3

ALLEN

61.

62.

In Dumas' method for estimation of nitrogen 0.4 g 63. of an organic compound gave 60 mL of nitrogen collected at 300 K temperature and 715 mm Hg pressure. The percentage composition of nitrogen in the compound is (Given : Aqueous tension at 300 K = 15 mm Hg) (1) 15.71%(2) 20.95% (3) 17.46% (4) 7.85% Ans. (1) **Sol.** Pressure of N_2 gas evolved = 715 - 15 = 700 mm Hg $=\frac{700}{760}$ atm. $\therefore \text{ Mole of } N_2 \text{ evolved} = \frac{PV}{RT}$ $=\frac{700\times60\times10^{-3}}{760\times0.0821\times300}$ = 0.0022 mole \therefore wt. of N₂ evolved = 0.0022 × 28 = 0.063 gm : wt. % of nitrogen in compound $= \frac{\text{wt. of nitrogen}}{\text{wt. of compound}} \times 100$ **64**. $=\frac{0.063}{0.4}\times 100$ = 15.71%Mass of magnesium required to produce 220 mL of hydrogen gas at STP on reaction with excess of dil. HCl is Given : Molar mass of Mg is 24 g mol^{-1} . (1) 235.7 g (2) 0.24 mg(3) 236 mg (4) 2.444 g Ans. (3) **Sol.** Mg + 2HCl \rightarrow MgCl₂ + H₂ Volume H_2 evolved = 220 ml Sol. Mole of H₂ = $\frac{220 \times 10^{-3}}{22.4}$ = mole of Mg used $\therefore \text{ Mass of Mg used} = \frac{220 \times 10^{-3}}{22.4} \times 24$

 $= 235.7 \times 10^{-3}$ gm

= 235.7 mg

Given below are two statements :

Statement I : Wet cotton clothes made of cellulose based carbohydrate takes comparatively longer time to get dried than wet nylon polymer based clothes.

Statement II : Intermolecular hydrogen bonding with water molecule is more in nylon-based clothes than in the case of cotton clothes.

In the light of above statements, choose the *Correct* answer from the options given below

- (1) Statement I is false but Statement II is true
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

Ans. (2)

Sol. Cellulose derivcative has more number of hydroxy groups, so more H-bonding is present with water in cellulose derivatives cotton cloths.

Given below are two statements :

Statement I : CrO₃ is a stronger oxidizing agent than MoO₃

Statement II : Cr(VI) is more stable than Mo(VI) In the light of the above statements, choose the correct answer from the options given below

(1) Statement I is false but Statement II is true

- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are true
- (4) Both Statement I and Statement II are false

Ans. (2)

Statement-I is true but statement II is false.

Cr(VI) is less stable than Mo(VI)

Hence, CrO₃ easily reduce into Cr⁺³ as compared to MoO₃ and show stronger oxidizing nature.

65. Given below are two statements :

Statement I : Hyperconjugation is not a permanent effect.

Statement II: In general, greater the number of alkyl groups attached to a positively charged C-atom, greater is the hyperconjugation interaction and stabilization of the cation.

In the light of the above statements, choose the *correct* answer from the options given below

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Statement I is false but Statement II is true
- (4) Both Statement I and Statement II are true

Ans. (3)

- Sol. Hyper conjugation is permanent effect because external reagent is not required, so Statement-I is false and Statement-II is true. because moore alkyl group, more α -H, so more hyperconjugation which results more stability of carbocation.
- **66.** Given below are two statements :

Statement I: When a system containing ice in equilibrium with water (liquid) is heated, heat is absorbed by the system and there is no change in the temperature of the system until whole ice gets melted.

Statement II : At melting point of ice, there is absorption of heat in order to overcome intermolecular forces of attraction within the molecules of water in ice and kinetic energy of molecules is not increased at melting point.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are false
- (3) Both Statement I and Statement II are true
- (4) Statement I is false but Statement II is true

- **Sol.** At melting point when ice melts, supplied heat is utilised to overcome intermolecular attraction within the molecules so temperature remain constant.
- **67.** The sequence from the following that would result in giving predominantly 3, 4, 5 –Tribromoaniline is :

OVER	3ER3
68.	The correct orders among the following are
	Atomic radius : B < Al < Ga < In < Tl
	Electronegativity : Al < Ga < In < Tl < B
	Density : $Tl < In < Ga < Al < B$
	1st Ionisation Energy : In < Al < Ga < Tl < B
	Choose the correct answer from the options given
	below :

(1) B and D Only	(2) A and C Only
(3) C and D Only	(4) A and B Only

Ans. (1)

Sol.

	В	Al	Ga	In	Tl
Atomic radius	88	143	135	167	170
(pm)					
Electronegativity	2	1.5	1.6	1.7	1.8
Density	2.35	2.7	5.9	7.31	11.85
(g/cm^3)					
Ionisation	801	577	579	558	589
Energy (kJ/mol)					

Radius Order	$T\ell > In > A\ell > Ga > B$	
EN Order	$B > T\ell > In > Ga > Al$	
Density Order	$T\ell > In > Ga > A\ell > B$	
IE ₁ Order	$B > T\ell > Ga > A\ell > In$	

69. What is the correct IUPAC name of

O₂N CO₂H Br OH ?

(1) 3-Bromo-2-hydroxy-5-nitrobenzoic acid

- (2) 3-Bromo-4-hydroxy-1-nitrobenzoic acid
- (3) 2-Hydroxy-3-bromo-5-nitrobenzoic acid
- (4) 5-Nitro-3-bromo-2-hydroxybenzoic acid

Ans. (1)

So

$$H_{\text{H}} = \begin{array}{c} O_2 N & 5 & 6 \\ 4 & O_2 H \\ 4 & O_2 H \\ 4 & O_2 H \\ 0 & O_2$$

IUPAC 3-Bromo-2-hydroxy-5-nitro-Benzoic acid

- 70. Consider the following statements related to temperature dependence of rate constants. Identify the correct statements,
 - A. The Arrhenius equation holds true only for an elementary homogenous reaction.
 - B. The unit of A is same as that of k in Arrhenius equation.
 - C. At a given temperature, a low activation energy means a fast reaction.
 - D. A and Ea as used in Arrhenius equation depend on temperature.
 - E. When Ea >> RT. A and Ea become interdependent.

Choose the **correct** answer from the options given below :

- (1) A, C and D Only (2) B, D and E Only
- (3) B and C Only (4) A and B Only

Ans. (3)

Sol. Arrhenious equation hold true for elementary as well as complex reactions.

Unit of A is same as unit of k. Rate of reaction is high if activation energy is low,

A and Ea are temperature independent.

SECTION-B

71. X g of nitrobenzene on nitration gave 4.2 g of m-dinitrobenzene.

X =_____ g. (nearest integer)

[Given : molar mass (in g mol⁻¹) C : 12, H : 1, O : 16, N : 14]

Ans. (3)

Sol.
$$\bigwedge^{NO_2} \xrightarrow{\text{Nitration}} \bigwedge^{NO_2} \xrightarrow{4.2 \text{ gm}} A$$

C₆H₅NO₂ MF = C₆H₄N₂O₄
MW = 123 MW = 168
∴
$$\frac{4.2}{168}$$
 = 0.025 mol

: required gm of nitro benzene

$$= 123 \times 0.025$$

= 3.075

 \therefore Nearest integer is 3

ALLEN

ALLEN

JEE-Main Exam Session-2 (April 2025)/03-04-2025/ Evening Shift

A perfect gas (0.1 mol) having $\overline{C}_v = 1.50$ R (independent of temperature) undergoes the above transformation from point 1 to point 4. If each step is reversible, the total work done (w) while going from point 1 to point 4 is (–) _____ J (nearest integer) [Given : R = 0.082 L atm K⁻¹ mol⁻¹]

Ans. (304)

Sol. $W_{1\rightarrow 2} = 0$

 $W_{2\to 3} = -P\Delta V$

$$= -3 [2-1]$$

= $-3 \text{ atm} - \ell$

$$W_{3\to 4} = 0$$

Total work done

- = $-3 \text{ atm} \ell$
- $= -3 \times 101.3$ Joule
- = -304 Joule
- 73. A sample of n-octane (1.14 g) was completely burnt in excess of oxygen in a bomb calorimeter, whose heat capacity is 5 kJ K⁻¹. As a result of combustion reaction, the temperature of the calorimeter is increased by 5 K. The magnitude of the heat of combustion of octane at constant volume is _____ kJ mol⁻¹ (nearest integer).

Ans. (2500)

Sol. Mole of octane =
$$\frac{1.14}{114} = 0.01$$
 mole
Heat evolved = C × Δ T
= 5 × 5 kJ
= 25 kJ
 \therefore Magnitude of Heat of combustion = $\frac{25}{0.01} = 2500$

kJ/mole

74. Among, Sc, Mn, Co and Cu, identify the element with highest enthalpy of atomisation. The spin only magnetic moment value of that element in its +2 oxidation state is _____ BM (in nearest integer).

Ans. (4)

Sol.

	Sc	Mn	Co	Cu
Enthalpy of Atomisation (kI/mole)	326	281	425	339

Highest Co

$$Co^{+2} = (Ar)3d^7$$

[1]1111]
 $n = 3$
 $\mu = \sqrt{15} = 3.87$

Nearest integer = 4

75. The total number of structural isomers possible for the substituted benzene derivatives with the molecular formula C_9H_{12} is

Ans. (8)

Sol. MF = C_9H_{12}

