

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Monday 29th January, 2024)

TIME: 3:00 PM to 06:00 PM TEST PAPER WITH SOLUTION

CHEMISTRY

SECTION-A

61. The ascending acidity order of the following H atoms is

$$HC \equiv C - \underbrace{H}_{2}C = CH \qquad H_{3}C - C - \underbrace{H}_{3}C - CH_{2} - \underbrace{H}_{3}C$$

$$A \qquad B \qquad C \qquad D$$

- (1) C < D < B < A
- (2) A < B < C < D
- (3) A < B < D < C
- (4) D < C < B < A

Ans. (1)

Sol.
$$CH = C^{\Theta} > CH_2 = CH > H_3C - CH_2 > CH_3 > CH_3 > CH_3$$

Stability of conjugate base α acidic strength

C < D < B < A

62. Match List I with List II

List I (Bio Polymer)		List II (Monomer)	
A.	Starch	I.	nucleotide
B.	Cellulose	II.	α-glucose
C.	Nucleic acid	III.	β-glucose
D.	Protein	IV.	α-amino acid

Choose the correct answer from the options given below:-

- (1) A-II, B-I, C-III, D-IV
- (2) A-IV, B-II, C-I, D-III
- (3) A-I, B-III, C-IV, D-II
- (4) A-II, B-III, C-I, D-IV

Ans. (4)

Sol. A-II, B-III, C-I, D-IV Fact based.

63. Match List I with List II

List I		List II	
(Compound)		(pK _a value)	
A.	Ethanol	I.	10.0
B.	Phenol	II.	15.9
C.	m-Nitrophenol	III.	7.1
D.	p-Nitrophenol	IV.	8.3

Choose the correct answer from the options given below:-

- (1) A-I, B-II, C-III, D-IV
- (2) A-IV, B-I, C-II, D-III
- (3) A-III, B-IV, C-I, D-II
- (4) A-II, B-I, C-IV, D-III

Ans. (4)

Sol. Ethanol \rightarrow 15.9

Phenol $\rightarrow 10$

M-Nitrophenol $\rightarrow 8.3$

P-Nitrophenol \rightarrow 7.1

- **64.** Which of the following reaction is correct?
 - (1) $CH_3CH_2CH_2NH_2 \xrightarrow{HNO_2,0^{\circ}C} CH_3CH_2OH + N_2 + HCl$

(2)
$$CH_3$$
 + HI \rightarrow I Br Br

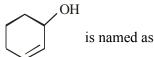
(4) $C_2H_5CONH_2 + Br_2 + NaOH$ $\rightarrow C_2H_5CH_2NH_2 + Na_2CO_3 + NaBr + H_2O$

Ans. (2)

CH₃

ALLEN
AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE


CLICK HERE TO DOWNLOAD

CH₃

65. According to IUPAC system, the compound

- (1) Cyclohex-1-en-2-ol (2) 1-Hydroxyhex-2-ene
- (3) Cyclohex-1-en-3-ol (4) Cyclohex-2-en-1-ol
- Ans. (4)
 - Cyclohex-2-en-1-ol
- **66.** The correct IUPAC name of K₂MnO₄ is
 - (1) Potassium tetraoxopermanganate (VI)
 - (2) Potassium tetraoxidomanganate (VI)
 - (3) Dipotassium tetraoxidomanganate (VII)
 - (4) Potassium tetraoxidomanganese (VI)
- Ans. (2)
- Sol. K_2MnO_4

$$2+x-8=0$$

$$\Rightarrow$$
 x = +6

O.S. of Mn = +6

IUPAC Name =

Potassium tetraoxidomanganate(VI)

- **67.** A reagent which gives brilliant red precipitate with Nickel ions in basic medium is
 - (1) sodium nitroprusside
 - (2) neutral FeCl₃
 - (3) meta-dinitrobenzene
 - (4) dimethyl glyoxime
- Ans. (4)
- Sol. $Ni^{2+} + 2dmg^{-} \rightarrow [Ni(dmg)_{2}]$ Rosy red/Bright Red precipitate
- **68.** Phenol treated with chloroform in presence of sodium hydroxide, which further hydrolysed in presence of an acid results
 - (1) Salicyclic acid
 - (2) Benzene-1,2-diol
 - (3) Benzene-1, 3-diol
 - (4) 2-Hydroxybenzaldehyde
- Ans. (4)

Sol.
$$\bigcirc$$
 OH + CHCl₃ + NaOH \longrightarrow \bigcirc OH CHC

α-hydroxy-benzaldehyde

It is Reimer Tiemann Reaction

69. Match List I with List II

List I (Spectral Series for Hydrogen)		List II (Spectral Region/Higher Energy State)	
A.	Lyman	I.	Infrared region
B.	Balmer	II.	UV region
C.	Paschen	III.	Infrared region
D.	Pfund	IV.	Visible region

Choose the correct answer from the options given below:-

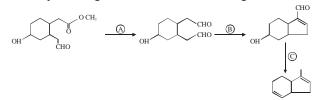
- (1) A-II, B-III, C-I, D-IV
- (2) A-I, B-III, C-II, D-IV
- (3) A-II, B-IV, C-III, D-I
- (4) A-I, B-II, C-III, D-IV
- Ans. (3)
- **Sol.** A II, B IV, C III, D I Fact based.
- **70.** On passing a gas, 'X', through Nessler's reagent, a brown precipitate is obtained. The gas 'X' is
 - (1) H₂S
- (2) CO₂
- (3) NH₃
- (4) Cl₂

- Ans. (3)
- Sol. Nessler's Reagent Reaction:

$$2K_2HgI_4 + NH_3 + 3KOH \rightarrow HgO. Hg(NH_2)I + 7KI + 2H_2O$$
 (Nessler's Reagent) (Iodine of Millon's base)

71. The product A formed in the following reaction is:

Ans. (3)


Sol.
$$NH_{2} \longrightarrow NH_{2} \longrightarrow NaNO_{2} HCl \longrightarrow Cu_{2}Cl_{2} \longrightarrow Cu_{2}Cl_{2} \longrightarrow Cl$$

2

Final JEE-Main Exam January, 2024/29-01-2024/Evening Session

72. Identify the reagents used for the following conversion

- (1) $A = LiAlH_4$, $B = NaOH_{(aq)}$, $C = NH_2-NH_2/KOH$, ethylene glycol
- (2) $A = LiAlH_4$, $B = NaOH_{(alc)}$, C = Zn/HCl
- (3) A = DIBAL-H, B= NaOH_(aq), C = NH₂-NH₂/KOH, ethylene glycol
- (4) A = DIBAL-H, $B = NaOH_{(alc)}$, C = Zn/HCl

Ans. (4)

Sol.

- 73. Which of the following acts as a strong reducing agent? (Atomic number : Ce = 58, Eu = 63, Gd = 64, Lu = 71)
 - (1) Lu^{3+}
- (2) Gd^{3+}
- (3) Eu^{2+}
- $(4) \text{ Ce}^{4+}$

Ans. (3)

- Sol. $Eu^{+2} \longrightarrow Eu^{+3} + 1e^{-}$ [Xe] $4f^{7}6s^{0}$ [Xe] $4f^{6}6s^{0}$
- 74. Chromatographic technique/s based on the principle of differential adsorption is/are
 - A. Column chromatography
 - B. Thin layer chromatography
 - C. Paper chromatography

Choose the most appropriate answer from the options given below:

- (1) B only
- (2) A only
- (3) A & B only
- (4) C only

Ans. (3)

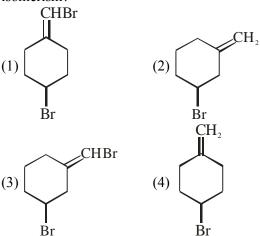
Sol. Memory Based

- **75.** Which of the following statements are correct about Zn, Cd and Hg?
 - A. They exhibit high enthalpy of atomization as the d-subshell is full.
 - B. Zn and Cd do not show variable oxidation state while Hg shows +I and +II.
 - C. Compounds of Zn, Cd and Hg are paramagnetic in nature.
 - D. Zn, Cd and Hg are called soft metals.

Choose the *most appropriate* from the options given below:

- (1) B, D only
- (2) B, C only
- (3) A, D only
- (4) C, D only
- Sol. Ans. (1)
 - (A) Zn, Cd, Hg exhibit lowest enthalpy of atomization in respective transition series.
 - (C) Compounds of Zn, Cd and Hg are diamagnetic in nature.
- **76.** The element having the highest first ionization enthalpy is
 - (1) Si

(2) Al


- (3) N
- (4) C

Ans. (3)

- **Sol.** Al \leq Si \leq C \leq N; IE₁ order.
- 77. Alkyl halide is converted into alkyl isocyanide by reaction with
 - (1) NaCN
- (2) NH₄CN
- (3) KCN
- (4) AgCN

Ans. (4)

- Sol. Covalent character of AgCN.
- **78.** Which one of the following will show geometrical isomerism?

Ans. (3)

Sol. Due to unsymmetrical.

ALLEN
AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD

79. Given below are two statements:

Statement I: Fluorine has most negative electron gain enthalpy in its group.

Statement II: Oxygen has least negative electron gain enthalpy in its group.

In the light of the above statements, choose the most appropriate from the options given below.

- (1) Both Statement I and Statement II are true
- (2) Statement I is true but Statement II is false
- (3) Both Statement I and Statement II are false
- (4) Statement I is false but Statement II is true

Ans. (4)

- **Sol.** Statement-1 is false because chlorine has most negative electron gain enthalpy in its group.
- **80.** Anomalous behaviour of oxygen is due to its
 - (1) Large size and high electronegativity
 - (2) Small size and low electronegativity
 - (3) Small size and high electronegativity
 - (4) Large size and low electronegativity

Ans. (3)

Sol. Fact Based.

SECTION-B

- **81.** The total number of anti bonding molecular orbitals, formed from 2s and 2p atomic orbitals in a diatomic molecule is
- Ans. (4)
- **Sol.** Antibonding molecular orbital from 2s = 1 Antibonding molecular orbital from 2p = 3 Total = 4
- 82. The oxidation number of iron in the compound formed during brown ring test for NO₃ ion is _____.
- Ans. (1)
- **Sol.** $[Fe(H_2O)_5(NO)]^{2+}$, Oxidation no. of Fe = +1
- 83. The following concentrations were observed at 500 K for the formation of NH₃ from N₂ and H₂. At equilibrium: $[N_2] = 2 \times 10^{-2}$ M, $[H_2] = 3 \times 10^{-2}$ M and $[NH_3] = 1.5 \times 10^{-2}$ M. Equilibrium constant for the reaction is
- Ans. (417)
- **Sol.** $K_{C} = \frac{\left[NH_{3}\right]^{2}}{\left[N_{2}\right]\left[H_{2}\right]^{3}}$

$$K_{C} = \frac{\left(1.5 \times 10^{-2}\right)^{2}}{\left(2 \times 10^{-2}\right) \times \left(3 \times 10^{-2}\right)^{3}}$$

- $K_C = 417$
- **84.** Molality of 0.8 M H_2SO_4 solution (density 1.06 g cm⁻³) is $\underline{\hspace{1cm}} \times 10^{-3}$ m.
- Ans. (815)

Sol.
$$m = \frac{M \times 1000}{d_{sol} \times 1000 - M \times Molar \text{ mass}_{solute}}$$

 $815 \times 10^{-3} \text{ m}$

- **85.** If 50 mL of 0.5 M oxalic acid is required to neutralise 25 mL of NaOH solution, the amount of NaOH in 50 mL of given NaOH solution is
- Ans. $(\overline{4})$
- Sol. Equivalent of Oxalic acid = Equivalents of NaOH $50 \times 0.5 \times 2 = 25 \times M \times 1$ $M_{NaOH} = 2M$

 W_{NaOH} in 50ml = 2 × 50 × 40 × 10⁻³ g = 4g

- **86.** The total number of 'Sigma' and Pi bonds in 2-formylhex-4-enoic acid is

22 bonds

87. The half-life of radioisotopic bromine - 82 is 36 hours. The fraction which remains after one day is 10^{-2} .

(Given antilog 0.2006 = 1.587)

- Ans. (63)
- **Sol.** Half life of bromine -82 = 36 hours

$$t_{1/2} = \frac{0.693}{K}$$

$$K = \frac{0.693}{36} = 0.01925 \text{ hr}^{-1}$$

1st order rxn kinetic equation

$$t = \frac{2.303}{K} \log \frac{a}{a - x}$$

$$\log \frac{a}{a - x} = \frac{t \times K}{2.303} \quad (t = 1 \text{day} = 24 \text{hr})$$

$$\log \frac{a}{a - x} = \frac{24 \text{hr} \times 0.01925 \, \text{hr}^{-1}}{2.303}$$

$$\log \frac{a}{a - x} = 0.2006$$

$$\frac{a}{a-x} = \operatorname{antilog}(0.2006)$$

$$\frac{a}{a-x} = 1.587$$

If
$$a = 1$$

$$\frac{1}{1-x} = 1.587 \implies 1 - x = 0.6301 = Fraction remain$$

after one day

ALLEN AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO

88. Standard enthalpy of vapourisation for CCl₄ is 30.5 kJ mol⁻¹. Heat required for vapourisation of 284g of CCl₄ at constant temperature is ____kJ.

(Given molar mass in g mol⁻¹; C = 12, Cl = 35.5)

Ans. (56)

Sol. $\Delta H_{\text{vap}}^{0} \text{ CCl}_{4} = 30.5 \text{ kJ/mol}$

Mass of $CCl_4 = 284 \text{ gm}$

Molar mass of $CCl_4 = 154$ g/mol

Moles of $CCl_4 = \frac{284}{154} = 1.844 \text{ mol}$

 $\Delta H_{\text{vap}}^{\circ}$ for 1 mole = 30.5 kJ/mol

 $\Delta H_{\text{vap}}^{\text{ o}}$ for 1.844 mol = 30.5 × 1.844 = 56.242 kJ 89. A constant current was passed through a solution of $AuCl_4^-$ ion between gold electrodes. After a period of 10.0 minutes, the increase in mass of cathode was 1.314 g. The total charge passed through the solution is $\times 10^{-2}$ F.

(Given atomic mass of Au = 197)

Ans. (2)

Sol. $\frac{W}{E} = \frac{\text{ch arg e}}{1F}$

$$\frac{1.314}{\frac{197}{3}} = \frac{Q}{1F}$$

 $O = 2 \times 10^{-2} \text{ F}$

SEA

90. The total number of molecules with zero dipole moment among CH₄, BF₃, H₂O, HF, NH₃, CO₂ and SO₂ is _____.

Ans. (3)

Sol. Molecules with zero dipole moment = CO_2 , CH_4 , BF_3