FINAL JEE-MAIN EXAMINATION - JANUARY, 2024
 (Held On Tuesday 30th January, 2024)
 TIME : 3: 00 PM to 6: 00 PM

CHEMISTRY

SECTION-A

61. Which among the following purification methods is based on the principle of "Solubility" in two different solvents?
(1) Column Chromatography
(2) Sublimation
(3) Distillation
(4) Differential Extraction

Ans. (4)
Sol. Different Extraction
Different layers are formed which can be separated in funnel. (Theory based).
62. Salicylaldehyde is synthesized from phenol, when reacted with
(1)

(2) $\mathrm{CO}_{2}, \mathrm{NaOH}$
(3) $\mathrm{CCl}_{4}, \mathrm{NaOH}$
(4) $\mathrm{HCCl}_{3}, \mathrm{NaOH}$

Ans. (4)

Sol.

63. Given below are two statements:

Statement - I: High concentration of strong nucleophilic reagent with secondary alkyl halides which do not have bulky substituents will follow $\mathrm{S}_{\mathrm{N}} 2$ mechanism.
Statement - II: A secondary alkyl halide when treated with a large excess of ethanol follows $\mathrm{S}_{\mathrm{N}} 1$ mechanism.
In the the light of the above statements, choose the most appropriate from the questions given below:
(1) Statement I is true but Statement II is false.
(3) Statement I is false but Statement II is true.
(3) Both statement I and Statement II are false.
(4) Both statement I and Statement II are true.

Ans. (4)

TEST PAPER WITH SOLUTION

Sol. Statement - I: Rate of $\mathrm{S}_{\mathrm{N}} 2 \propto[\mathrm{R}-\mathrm{X}]\left[\mathrm{Nu}^{-}\right]$
$\mathrm{S}_{\mathrm{N}} 2$ reaction is favoured by high concentration of nucleophile $\left(\mathrm{Nu}^{-}\right)$\& less crowding in the substrate molecule.

Statement - II: Solvolysis follows $\mathrm{S}_{\mathrm{N}} 1$ path.
Both are correct Statements.
64. m-chlorobenzaldehyde on treatment with 50% KOH solution yields

Ans. (2)
Sol. Meta-chlorobenzaldehyde will undergo
Cannizzaro reaction with $50 \% \mathrm{KOH}$ to give $\mathrm{m}-$
chlorobenzoate ion and m-chlorobenzyl alcohol.

65. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R.
Assertion A : $\mathrm{H}_{2} \mathrm{Te}$ is more acidic than $\mathrm{H}_{2} \mathrm{~S}$.
Reason R: Bond dissociation enthalpy of $\mathrm{H}_{2} \mathrm{Te}$ is lower than $\mathrm{H}_{2} \mathrm{~S}$.
In the light of the above statements. Choose the most appropriate from the options given below.
(1) Both A and R are true but R is NOT the correct explanation of A .
(2) Both A and R are true and R is the correct explanation of A .
(3) A is false but R is true.
(4) A is true but R is false.

Ans. (2)
Sol. Due to lower Bond dissociation enthalpy of $\mathrm{H}_{2} \mathrm{Te}$ it ionizes to give H^{+}more easily than $\mathrm{H}_{2} \mathrm{~S}$.
66. Product A and B formed in the following set of reactions are:

(1)

Ans. (2)
Sol.

(A)
67. IUPAC name of following compound is

(1) 2-Aminopentanenitrile
(2) 2-Aminobutanenitrile
(3) 3-Aminobutanenitrile
(4) 3-Aminopropanenitrile

Ans. (3)
Sol.

3-Aminobutanenitrile
68. The products A and B formed in the following reaction scheme are respectively
(i) conc. $\mathrm{HNO}_{3} /$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$

(ii) Phenol \rightarrow B

Ans. (3)

Sol.

69. The molecule/ion with square pyramidal shape is:
(1) $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{2-}$
(2) PCl_{5}
(3) BrF_{5}
(4) PF_{5}

Ans. (3)
Sol. BrF_{5}

Square Pyramidal.
70. The orange colour of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and purple colour of KMnO_{4} is due to
(1) Charge transfer transition in both.
(2) $\mathrm{d} \rightarrow \mathrm{d}$ transition in KMnO_{4} and charge transfer transitions in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
(3) $\mathrm{d} \rightarrow \mathrm{d}$ transition in $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and charge transfer transitions in KMnO_{4}.
(4) $d \rightarrow d$ transition in both.

Ans. (1)
Sol. $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \rightarrow \mathrm{Cr}^{+6} \rightarrow$ Nod-d transition $\}$ $\mathrm{KMnO}_{4} \rightarrow \mathrm{Mn}^{7+} \rightarrow \mathrm{No} \mathrm{d}-\mathrm{d}$ transition $\}$ Charge transfer
71. Alkaline oxidative fusion of MnO_{2} gives " A " which on electrolytic oxidation in alkaline solution produces B . A and B respectively are:
(1) $\mathrm{Mn}_{2} \mathrm{O}_{7}$ and MnO_{4}^{-}
(2) $\mathrm{MnO}_{4}{ }^{2-}$ and MnO_{4}^{-}
(3) $\mathrm{Mn}_{2} \mathrm{O}_{3}$ and MnO_{4}^{2-}
(4) $\mathrm{MnO}_{4}{ }^{2-}$ and $\mathrm{Mn}_{2} \mathrm{O}_{7}$

Ans. (2)
Sol. Alkaline oxidative fusion of MnO_{2} :

$$
2 \mathrm{MnO}_{2}+4 \mathrm{OH}^{-}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MnO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}
$$

Electrolytic oxidation of $\mathrm{MnO}_{4}{ }^{2-}$ in alkaline medium.
$\mathrm{MnO}_{4}^{2-} \rightarrow \mathrm{MnO}_{4}^{-}+e^{-}$
72. If a substance ' A ' dissolves in solution of a mixture of ' B ' and ' C ' with their respective number of moles as n_{A}, n_{B} and n_{C}, mole fraction of C in the solution is:
(1) $\frac{n_{C}}{n_{A} \times n_{B} \times n_{C}}$
(2) $\frac{n_{C}}{n_{A}+n_{B}+n_{C}}$
(3) $\frac{n_{C}}{n_{A}-n_{B}-n_{C}}$
(4) $\frac{n_{B}}{n_{A}+n_{B}}$

Ans. (2)
Sol. Mole fraction of $C=\frac{n_{C}}{n_{A}+n_{B}+n_{C}}$
73. Given below are two statements:

Statement - I: Along the period, the chemical reactivity of the element gradually increases from group 1 to group 18 .
Statement - II: The nature of oxides formed by group 1 element is basic while that of group 17 elements is acidic.
In the the light above statements, choose the most appropriate from the questions given below:
(1) Both statement I and Statement II are true.
(2) Statement I is true but Statement II is False.
(3) Statement I is false but Statement II is true.
(4) Both Statement I and Statement II is false.

Ans. (3)
Sol. Chemical reactivity of elements decreases along the period therefore statement - I is false.
Group - 1 elements from basic nature oxides while group - 17 elements form acidic oxides therefore statement - II is true.
74. The coordination geometry around the manganese in decacarbonyldimanganese (0)
(1) Octahedral
(2) Trigonal bipyramidal
(3) Square pyramidal
(4) Square planar

Ans. (1)
Sol. $\quad \mathrm{Mn}_{2}(\mathrm{CO})_{10}$

Octahedral around Mn
75. Given below are two statements:

Statement-I: Since fluorine is more electronegative than nitrogen, the net dipole moment of NF_{3} is greater than NH_{3}.
Statement-II: In NH_{3}, the orbital dipole due to lone pair and the dipole moment of NH bonds are in opposite direction, but in NF_{3} the orbital dipole due to lone pair and dipole moments of N-F bonds are in same direction.

In the light of the above statements. Choose the most appropriate from the options given below.
(1) Statement I is true but Statement II is false.
(2) Both Statement I and Statement II are false.
(3) Both statement I and Statement II is are true.
(4) Statement I is false but Statement II is are true.

Ans. (2)

Sol.

76. The correct stability order of carbocations is
(1) $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}>\mathrm{CH}_{3}-\stackrel{+}{\mathrm{C}} \mathrm{H}_{2}>\left(\mathrm{CH}_{3}\right)_{2} \stackrel{+}{\mathrm{C}} \mathrm{H}>\stackrel{+}{\mathrm{C}} \mathrm{H}_{3}$
(2)

(3)

(4)

Ans. (3)
Sol. More no. of hyperconjugable Hydrogens, more stable is the carbocations.
77. The solution from the following with highest depression in freezing point/lowest freezing point is
(1) 180 g of acetic acid dissolved in water
(2) 180 g of acetic acid dissolved in benzene
(3) 180 g of benzoic acid dissolved in benzene
(4) 180 g of glucose dissolved in water

Ans. (1)

Sol. $\Delta \mathrm{T}_{\mathrm{f}}$ is maximum when $\mathrm{i} \times \mathrm{m}$ is maximum.

1) $\mathrm{m}_{1}=\frac{180}{60}=3, \mathrm{i}=1+\alpha$

Hence

$$
\Delta \mathrm{T}_{\mathrm{f}}=(1+\alpha) \cdot \mathrm{k}_{\mathrm{f}}=3 \times 1.86=5.58^{\circ} \mathrm{C}(\alpha \ll 1)
$$

2) $\mathrm{m}_{2}=\frac{180}{60}=3, \mathrm{i}=0.5, \Delta \mathrm{~T}_{\mathrm{f}}=\frac{3}{2} \times \mathrm{k}_{\mathrm{f}}^{\prime}=7.68^{\circ} \mathrm{C}$
3) $\mathrm{m}_{3}=\frac{180}{122}=1.48, \mathrm{i}=0.5, \Delta \mathrm{~T}_{\mathrm{f}}=\frac{1.48}{2} \times \mathrm{k}_{\mathrm{f}}{ }^{\prime}=3.8^{\circ} \mathrm{C}$
4) $\mathrm{m}_{4}=\frac{180}{180}=1, \mathrm{i}=1, \Delta \mathrm{~T}_{\mathrm{f}}=1 \cdot \mathrm{k}_{\mathrm{f}}{ }^{\prime}=1.86^{\circ} \mathrm{C}$

As per NCERT, $\mathrm{k}_{\mathrm{f}}{ }^{\prime}\left(\mathrm{H}_{2} \mathrm{O}\right)=1.86 \mathrm{k} \cdot \mathrm{kg} \mathrm{mol}{ }^{-1}$

$$
\mathrm{k}_{\mathrm{f}}{ }^{\prime}(\text { Benzene })=5.12 \mathrm{k} \cdot \mathrm{~kg} \mathrm{~mol}^{-1}
$$

78. A and B formed in the following reactions are:

$$
\begin{aligned}
& \mathrm{CrO}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{~A}+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{~A}+2 \mathrm{HCl}+2 \mathrm{H}_{2} \mathrm{O}_{2} \rightarrow \mathrm{~B}+3 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

(1) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{CrO}_{4}, \mathrm{~B}=\mathrm{CrO}_{5}$
(2) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{4}, \mathrm{~B}=\mathrm{CrO}_{4}$
(3) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{~B}=\mathrm{CrO}_{3}$
(4) $\mathrm{A}=\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{~B}=\mathrm{CrO}_{5}$

Ans. (1)
Sol. $\mathrm{CrO}_{2} \mathrm{Cl}_{2}+4 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{NaCl}+2 \mathrm{H}_{2} \mathrm{O}$
(A)
$\mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{H}_{2} \mathrm{O}_{2}+2 \mathrm{HCl} \rightarrow \underset{\text { (B) }}{\mathrm{CrO}_{5}}+\underset{\substack{\text { Missing from } \\ \text { balanced eqaution }}}{2 \mathrm{NaCl}}+3 \mathrm{H}_{2} \mathrm{O}$
79. Choose the correct statements about the hydrides of group 15 elements.
A. The stability of the hydrides decreases in the order $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{BiH}_{3}$
B . The reducing ability of the hydrides increases in the order $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$
C. Among the hydrides, NH_{3} is strong reducing agent while BiH_{3} is mild reducing agent.
D. The basicity of the hydrides increases in the order $\mathrm{NH}_{3}<\mathrm{PH}_{3}<\mathrm{AsH}_{3}<\mathrm{SbH}_{3}<\mathrm{BiH}_{3}$
Choose the most appropriate from the option given below:
(1) B and C only
(2) C and D only
(3) A and B only
(4) A and D only

Ans. (3)
Sol. On moving down the group, bond strength of $\mathrm{M}-\mathrm{H}$ bond decreases, which reduces the thermal stability but increases reducing nature of hydrides, hence A and B are correct statements.
80. Reduction potential of ions are given below:

$$
\begin{array}{ccc}
\mathrm{ClO}_{4}^{-} & \mathrm{IO}_{4}^{-} & \mathrm{BrO}_{4}^{-} \\
\mathrm{E}^{\circ}=1.19 \mathrm{~V} & \mathrm{E}^{\circ}=1.65 \mathrm{~V} & \mathrm{E}^{\circ}=1.74 \mathrm{~V}
\end{array}
$$

The correct order of their oxidising power is:
(1) $\mathrm{ClO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{BrO}_{4}^{-}$
(2) $\mathrm{BrO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$
(3) $\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}>\mathrm{IO}_{4}^{-}$
(4) $\mathrm{IO}_{4}^{-}>\mathrm{BrO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$

Ans. (2)
Sol. Higher the value of $\oplus \mathrm{ve}$ SRP (Std. reduction potential) more is tendency to undergo reduction, so better is oxidising power of reactant.

Hence, ox. Power:- $\mathrm{BrO}_{4}^{-}>\mathrm{IO}_{4}^{-}>\mathrm{ClO}_{4}^{-}$

SECTION-B

81. Number of complexes which show optical isomerism among the following is \qquad . cis $-\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-},\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+}$, cis $-\left[\operatorname{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$, cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+}$, trans $-\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+}$, trans $-\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-}$

Ans. (4)
Sol. cis $-\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-} \rightarrow$ can show optical isomerism (no POS \& COS)
$\left[\mathrm{Co}(\mathrm{en})_{3}\right]^{3+} \rightarrow$ can show (no POS \& COS)
cis $-\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+} \rightarrow$ can show (no POS \& COS)
cis $-\left[\mathrm{Co}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{+} \rightarrow$ can show (no POS \& COS)
trans $-\left[\mathrm{Pt}(\mathrm{en})_{2} \mathrm{Cl}_{2}\right]^{2+} \rightarrow$ can't show (contains POS \& COS)
trans $-\left[\mathrm{Cr}(\mathrm{ox})_{2} \mathrm{Cl}_{2}\right]^{3-} \rightarrow$ can't show (contains POS \& COS)
82. NO_{2} required for a reaction is produced by decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ in CCl_{4} as by equation $2 \mathrm{~N}_{2} \mathrm{O}_{5(\mathrm{~g})} \rightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}+\mathrm{O}_{2(\mathrm{~g})}$
The initial concentration of $\mathrm{N}_{2} \mathrm{O}_{5}$ is $3 \mathrm{~mol} \mathrm{~L}^{-1}$ and it is $2.75 \mathrm{~mol} \mathrm{~L}^{-1}$ after 30 minutes.
The rate of formation of NO_{2} is $\mathrm{x} \times 10^{-3} \mathrm{~mol} \mathrm{~L}^{-1}$ $\min ^{-1}$, value of x is \qquad .
Ans. (17)
Sol. Rate of reaction (ROR)
$=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=\frac{1}{4} \frac{\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}=\frac{\Delta\left[\mathrm{O}_{2}\right]}{\Delta \mathrm{t}}$
ROR $=-\frac{1}{2} \frac{\Delta\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\Delta \mathrm{t}}=-\frac{1}{2} \frac{(2.75-3)}{30} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
$\mathrm{ROR}=-\frac{1}{2} \frac{(-0.25)}{30} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~min}^{-1}$
$\mathrm{ROR}=\frac{1}{240} \mathrm{molL}^{-1} \mathrm{~min}^{-1}$
Rate of formation of $\mathrm{NO}_{2}=\frac{\Delta\left[\mathrm{NO}_{2}\right]}{\Delta \mathrm{t}}=4 \times \mathrm{ROR}$ $=\frac{4}{240}=16.66 \times 10^{-3} \mathrm{molL}^{-1} \mathrm{~min}^{-1} \simeq 17 \times 10^{-3}$.
83. Two reactions are given below:
$2 \mathrm{Fe}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}, \Delta \mathrm{H}^{\mathrm{o}}=-822 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}^{\mathrm{o}}=-110 \mathrm{~kJ} / \mathrm{mol}$
Then enthalpy change for following reaction
$3 \mathrm{C}_{(\mathrm{s})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{(\mathrm{g})}$
Ans. (492)
Sol. $2 \mathrm{Fe}_{(\mathrm{s})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})}, \Delta \mathrm{H}^{\mathrm{o}}=-822 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{C}_{(\mathrm{s})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}^{\mathrm{o}}=-110 \mathrm{~kJ} / \mathrm{mol}$
$3 \mathrm{C}_{(\mathrm{s})}+\mathrm{Fe}_{2} \mathrm{O}_{3(\mathrm{~s})} \rightarrow 2 \mathrm{Fe}_{(\mathrm{s})}+3 \mathrm{CO}_{(\mathrm{g})}, \Delta \mathrm{H}_{3}=$?
(3) $=3 \times(2)-(1)$
$\Delta \mathrm{H}_{3}=3 \times \Delta \mathrm{H}_{2}-\Delta \mathrm{H}_{1}$
$=3(-110)+822$
$=492 \mathrm{~kJ} / \mathrm{mole}$
84. The total number of correct statements, regarding the nucleic acids is \qquad .
A. RNA is regarded as the reserve of genetic information.
B. DNA molecule self-duplicates during cell division
C. DNA synthesizes proteins in the cell.
D. The message for the synthesis of particular proteins is present in DNA
E. Identical DNA strands are transferred to daughter cells.
Ans. (3)
Sol. A. RNA is regarded as the reserve of genetic information. (False)
B. DNA molecule self-duplicates during cell division. (True)
C. DNA synthesizes proteins in the cell. (False)
D. The message for the synthesis of particular proteins is present in DNA. (True)
E. Identical DNA strands are transferred to daughter cells. (True)
85. The pH of an aqueous solution containing 1 M benzoic acid $\left(\mathrm{pK}_{\mathrm{a}}=4.20\right)$ and 1 M sodium benzoate is 4.5. The volume of benzoic acid solution in 300 mL of this buffer solution is \qquad mL .

Ans. (100)
Sol.

1M Benzoic acid	$\begin{gathered} +1 \mathrm{M} \text { Sodium Benzoate } \\ \left(\mathrm{V}_{\mathrm{s}} \mathrm{ml}\right) \\ \mathrm{V}_{\mathrm{s}} \times 1 \end{gathered}$
$\mathrm{pH}=4.5$	
$\mathrm{pH}=\mathrm{pka}+\log \frac{[\text { salt }]}{[\text { acid }]}$	
$4.5=4.2+\log \left(\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{V}_{\mathrm{a}}}\right)$	
$\frac{\mathrm{V}_{\mathrm{s}}}{\mathrm{~V}_{\mathrm{a}}}=2$(1)
$\mathrm{V}_{\mathrm{s}}+\mathrm{V}_{\mathrm{a}}=300$ (2)
$\mathrm{V}_{\mathrm{a}}=100 \mathrm{ml}$	

86. Number of geometrical isomers possible for the given structure is/are \qquad .

Ans. (4)
Sol. 3 stereocenteres, symmetrical
Total Geometrical isomers $\rightarrow 4$. EE, ZZ, EZ (two isomers)

87. Total number of species from the following which can undergo disproportionation reaction \qquad .

$$
\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{ClO}_{3}^{-}, \mathrm{P}_{4}, \mathrm{Cl}_{2}, \mathrm{Ag}, \mathrm{Cu}^{+1}, \mathrm{~F}_{2}, \mathrm{NO}_{2}, \mathrm{~K}^{+}
$$

Ans. (6)
Sol. Intermediate oxidation state of element can undergo disproportionation.
$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{ClO}_{3}^{-}, \mathrm{P}_{4}, \mathrm{Cl}_{2}, \mathrm{Cu}^{+1}, \mathrm{NO}_{2}$
88. Number of metal ions characterized by flame test among the following is \qquad .
$\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}, \mathrm{Zn}^{2+}, \mathrm{Co}^{2+}, \mathrm{Fe}^{2+}$
Ans. (4)
Sol. All the following metal ions will respond to flame test.
$\mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Cu}^{2+}$
89. 2-chlorobutane $+\mathrm{Cl}_{2} \rightarrow \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$ (isomers)

Total number of optically active isomers shown by $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{Cl}_{2}$, obtained in the above reaction is \qquad .

Ans. (6)
Sol.

90. Number of spectral lines obtained in He^{+}spectra, when an electron makes transition from fifth excited state to first excited state will be

Ans. (10)
Sol. $\quad 5^{\text {th }}$ excited state $\Rightarrow n_{1}=6$
$1^{\text {st }}$ excited state $\Rightarrow \mathrm{n}_{2}=2$
$\Delta \mathrm{n}=\mathrm{n}_{1}-\mathrm{n}_{2}=6-2=4$
Maximum number of spectral lines

$$
=\frac{\Delta \mathrm{n}(\Delta \mathrm{n}+1)}{2}=\frac{4(4+1)}{2}=10
$$

