

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

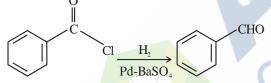
(Held On Tuesday 30th January, 2024)

TIME: 9:00 AM to 12:00 NOON

CHEMISTRY

SECTION-A

61. Given below are two statements:


Statement-I: The gas liberated on warming a salt with dil H₂SO₄, turns a piece of paper dipped in lead acetate into black, it is a confirmatory test for sulphide ion.

Statement-II: In statement-I the colour of paper turns black because of formation of lead sulphite. In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement-I and Statement-II are false
- (2) Statement-I is false but Statement-II is true
- (3) Statement-I is true but Statement-II is false
- (4) Both Statement-I and Statement-II are true.

Ans. (3)

Sol. $Na_2S + H_2SO_4 \rightarrow Na_2SO_4 + H_2S$ $(CH_3COO)_2Pb + H_2S \rightarrow PbS + 2CH_3COOH$ Black lead sulphide

62.

This reduction reaction is known as:

- (1) Rosenmund reduction
- (2) Wolff-Kishner reduction
- (3) Stephen reduction
- (4) Etard reduction

Ans. (1)

Sol.

$$\begin{array}{c|c} O \\ \hline Cl & \xrightarrow{H_2} \end{array} \begin{array}{c} CHO \\ \hline Pd-B \text{ as } O_4 \end{array}$$

It is known as rosenmund reduction that is the partial reduction of acid chloride to aldehyde

TEST PAPER WITH SOLUTION

- **63.** Sugar which does not give reddish brown precipitate with Fehling's reagent is:
 - (1) Sucrose
- (2) Lactose
- (3) Glucose
- (4) Maltose

Ans. (1)

Sol. Sucrose do not contain hemiacetal group.

Hence it does not give test with Fehling solution.

While all other give positive test with Fehling solution

64. Given below are the two statements: one is labeled as Assertion (A) and the other is labeled as Reason (R).

Assertion (A): There is a considerable increase in covalent radius from N to P. However from As to Bi only a small increase in covalent radius is observed.

Reason (R): covalent and ionic radii in a particular oxidation state increases down the group.

In the light of the above statement, choose the most appropriate answer from the options given below:

- (1) (A) is false but (R) is true
- (2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Ans. (2)

Sol. According to NCERT,

Statement-I: Factual data,

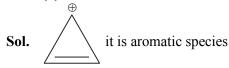
Statement-II is true.

But correct explanation is presence of completely filled d and f-orbitals of heavier members

ALLEN
AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

Which of the following molecule/species is most stable?

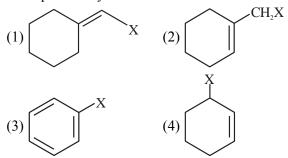


Ans. (1)

- Diamagnetic Lanthanoid ions are: **66.**
 - (1) Nd^{3+} and Eu^{3+}
- (2) La^{3+} and Ce^{4+}
- (3) Nd^{3+} and Ce^{4+}
- (4) Lu^{3+} and Eu^{3+}

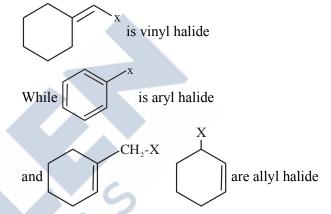
- Ans. (2)
- **Sol.** Ce: $[Xe] 4f^15d^16s^2$; Ce^{4+} diamagnetic La : [Xe] $4f^05d^16s^2$; La³⁺ diamagnetic
- **67.** Aluminium chloride in acidified aqueous solution forms an ion having geometry
 - (1) Octahedral
 - (2) Square Planar
 - (3) Tetrahedral
 - (4) Trigonal bipyramidal
- Ans. (1)
- **Sol.** AlCl₃ in acidified aqueous solution forms octahedral geometry [Al(H₂O)₆]³⁺
- **68.** Given below are two statements:

Statement-I: The orbitals having same energy are called as degenerate orbitals.


Statement-II: In hydrogen atom, 3p and 3d orbitals are not degenerate orbitals.

In the light of the above statements, choose the most appropriate answer from the options given

- (1) Statement-I is true but Statement-II is false
- (2) Both Statement-I and Statement-II are true.
- (3) Both Statement-I and Statement-II are false
- (4) Statement-I is false but Statement-II is true
- **Sol.** For single electron species the energy depends upon principal quantum number 'n' only. So, statement II


Statement I is correct definition of degenerate orbitals.

69. Example of vinylic halide is

Ans. (1)

Sol. Vinyl carbon is sp² hybridized aliphatic carbon

Structure of 4-Methylpent-2-enal is

$$\begin{array}{c|cccc}
CH_3 & O & | & | \\
 & | & | & | \\
(1) & H_2C = C - C - CH_2 - C - H \\
 & | & | & | \\
 & H & H
\end{array}$$

(2)
$$CH_3 - CH_2 - C = CH - C - H$$

$$CH_3$$

(3)
$$CH_3 - CH_2 - CH = C - C - H$$

$$CH_3$$

(4)
$$CH_3 - CH - CH = CH - C - H$$

$$CH_3$$

Ans. (4)

Sol.
$$CH_3 - CH - CH = CH - CH - CH$$

$$CH_3 - CH - CH = CH - CH - CH$$

$$CH_3 - CH$$

$$4-Methylpent-2-enal$$

AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

71. Match List-II with List-II

List-I	List-II
Malaaula	Chana

- Molecule Shape
- (A) BrF_5 (I) T-shape
- (B) H_2O (II) See saw
- (C) ClF₃(III) Bent(D) SF₄(IV) Square pyramidal
- (1) (A)-I, (B)-II, (C)-IV, (D)-III
- (2) (A) –II, (B)-I, (C)-III, (D)-IV
- (3) (A)-III, (B)-IV, (C)-I, (D)-II
- (4) (A)-IV, (B)-III, (C)-I, (D)-II

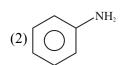
Ans. (4)

Sol. BrF_5 Br

Square pyramidal

Bent

$$ClF_3$$
 F
 Cl
 F


T-shape

$$SF_4$$
, $F \searrow F$

See-saw

72. The final product A, formed in the following multistep reaction sequence is:

Br
$$(ii)$$
 Mg, ether then CO₂, H⁺ (iii) NH₃, Δ (iii) Br₂, NaOH \rightarrow A

(4) OH

Ans. (2)

Sol.

$$\begin{array}{c} \text{Br} \\ \text{Mg, ether} \end{array} \\ \begin{array}{c} \text{MgBr} \\ \text{O} = \text{C} \\ \hline \\ \text{O} \end{array} \\ \begin{array}{c} \text{C-OMgBr} \\ \text{C-NH}_2 \\ \text{MgBr} \end{array} \\ \begin{array}{c} \text{COOH} \\ \text{COOH} \end{array}$$

73. In the given reactions identify the reagent A and reagent B

$$(CH_3) \qquad (A" + (CH_3CO)_2O \\ \hline 273-283K \qquad [Intermediate] \\ \hline (B" + CS_2) \qquad [Intermediate] \\ \hline (H_3O) \qquad (CHO) \qquad (CHO)$$

(1) A-CrO₃

B-CrO₃

(2) A-CrO₃

B-CrO₂Cl₂

(3) A-CrO₂Cl₂

B-CrO₂Cl₂

(4) A-CrO₂Cl₂

B-CrO₃

Ans. (2)

Sol.

$$\begin{array}{c|c} CH_{3} & CH(OCOCH_{3})_{2} \\ \hline \\ CrO_{3}/(CH_{3}CO)_{2}O & \\ \hline \\ CrO_{2}Cl_{2} & \\ \hline \\ CH[OCrCl_{2}(OH)]_{2} & H_{3}O^{+} \\ \hline \end{array}$$

ALLEN
AI POWERED APP

A

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD

Given below are two statement one is labeled as Assertion (A) and the other is labeled as Reason (R). Assertion (A): $CH_2 = CH - CH_2 - Cl$ is an example of allyl halide

> Reason (R): Allyl halides are the compounds in which the halogen atom is attached to sp² hybridised carbon atom.

> In the light of the two above statements, choose the most appropriate answer from the options given below:

- (1) (A) is true but (R) is false
- (2) Both (A) and (R) are true but (R) is not the correct explanation of (A)
- (3) (A) is false but (R) is true
- (4) Both (A) and (R) are true and (R) is the correct explanation of (A)

Ans. (1)

Sol.
$$CH_2 = CH - CH_2 - Cl$$

It is allyl carbon and sp³ hybridized

- What happens to freezing point of benzene when 75. small quantity of napthalene is added to benzene?
 - (1) Increases
 - (2) Remains unchanged
 - (3) First decreases and then increases
 - (4) Decreases

Ans. (4)

- **Sol.** On addition of naphthalene to benzene there is depression in freezing point of benzene.
- Match List-II with List-II **76.**

List-I	List-II
Species	Electronic distribution
$(A) \operatorname{Cr}^{+2}$	(I) 3d ⁸
(B) Mn ⁺	(II) $3d^34s^1$
(C) Ni ⁺²	(III) 3d ⁴
(D) V^+	$(IV) 3d^54s^1$
Choose the co	orrect answer from the options giv
below:	

en

- (1) (A)-I, (B)-II, (C)-III, (D)-IV
- (2) (A)-III, (B) IV, (C) I, (D)-II
- (3) (A)-IV, (B)-III, (C)-I, (D)-II
- (4) (A)-II, (B)-I, (C)-IV, (D)-III

Ans. (2)

Sol.
$${}_{24}\text{Cr} \rightarrow [\text{Ar}] \ 3d^5 4s^1; \ \text{Cr}^{2+} \rightarrow [\text{Ar}] \ 3d^4$$
 ${}_{25}\text{Mn} \rightarrow [\text{Ar}] \ 3d^5 4s^2; \ \text{Mn}^+ \rightarrow [\text{Ar}] \ 3d^5 4s^1$
 ${}_{28}\text{Ni} \rightarrow [\text{Ar}] \ 3d^8 4s^2; \ \text{Ni}^{2+} \rightarrow [\text{Ar}] \ 3d^8$
 ${}_{23}\text{V} \rightarrow [\text{Ar}] \ 3d^3 4s^2; \ \text{V}^+ \rightarrow [\text{Ar}] \ 3d^3 4s^1$

77. Compound A formed in the following reaction reacts with B gives the product C. Find out A and B.

$$CH_3 - C \equiv CH + Na \rightarrow A \xrightarrow{B} CH_3 - C \equiv C - CH_2 - CH_2 + NaBr$$

$$(C) \qquad | CH_3$$

(1)
$$A=CH_3-C \equiv \overline{C}Na^+$$
, $B=CH_3-CH_2-CH_2-Br$

(2)
$$A=CH_3-CH=CH_2$$
, $B=CH_3-CH_2-CH_2-Br$

(3)
$$A = CH_3 - CH_2 - CH_3$$
, $B = CH_3 - C \equiv CH$

(4)
$$A = CH_3 - C \equiv \overline{C}Na^+, B = CH_3 - CH_2 - CH_3$$

Ans. (1)

Sol.

78.

$$CH_3 - C = CH \xrightarrow{Na} CH_3 - C = C^-Na^+ \frac{CH_3CH_2CH_2 - Br}{\downarrow}$$

$$NaBr + CH_3 - C = C - CH_2CH_2CH_3$$

$$NH_2 \xrightarrow{A} \sqrt{\qquad} N_2 \xrightarrow{\mathbb{Q}} \xrightarrow{\mathbb{Q}} N_2 \text{Cl} \xrightarrow{NaOH} \text{Scarlet red dye}$$

(1)
$$A = HNO_3/H_2SO_4$$
; $B = OH$
(2) $A = NaNO_2 + HCl$, $0 - 5^{\circ}C$; $B = OH$
(3) $A = NaNO_2 + HCl$, $0 - 5^{\circ}C$; $B = OH$

(4)
$$A = NaNO_2 + HCl, 0 - 5^{\circ}C;$$

Ans. (4)

Sol.

$$NH_{2} \xrightarrow{NaNO_{2}/HCl} OH$$

$$0 - 5^{\circ}C$$

$$N=N \xrightarrow{OH} OH$$

$$Scarlet red dye$$

- **79.** The Lassiagne's extract is boiled with dil HNO₃ before testing for halogens because,
 - (1) AgCN is soluble in HNO₃
 - (2) Silver halides are soluble in HNO₃
 - (3) Ag₂S is soluble in HNO₃
 - (4) Na₂S and NaCN are decomposed by HNO₃

Ans. (4)

- **Sol.** If nitrogen or sulphur is also present in the compound, the sodium fusion extract is first boiled with concentrated nitric acid to decompose cyanide or sulphide of sodium during Lassaigne's test
- **80.** Choose the correct Statements from the following:
 - (A) Ethane-1 2-diamine is a chelating ligand.
 - (B) Metallic aluminium is produced by electrolysis of aluminium oxide in presence of cryolite.
 - (C) Cyanide ion is used as ligand for leaching of silver.
 - (D) Phosphine act as a ligand in Wilkinson catalyst.
 - (E) The stability constants of Ca²⁺ and Mg²⁺ are similar with EDTA complexes.

Choose the correct answer from the options given below:

- (1) (B), (C), (E) only
- (2)(C),(D),(E) only
- (3)(A),(B),(C) only
- (4) (A), (D), (E) only

Ans. (3)

Based on Hall-Heroults process [Rh(PPh₃)₃Cl] Wilkinson's catalyst

$$Ag_2S + NaCN \xrightarrow{Air} Na[Ag(CN)_2] + Na_2S$$

Ca⁺⁺ ion forms more stable complex with EDTA

SECTION-B

81. The rate of first order reaction is 0.04 mol L⁻¹ s⁻¹ at 10 minutes and 0.03 mol L⁻¹ s⁻¹ at 20 minutes after initiation. Half life of the reaction is _____ minutes. (Given log2=0.3010, log3=0.4771)

Ans. (24)

Sol.
$$0.04 = k[A]_0 e^{-k \times 10 \times 60}$$
 ...(1)

$$0.03 = k[A]_0 e^{-k \times 20 \times 60} \qquad \dots (2)$$

(1)/(2)

$$\frac{4}{3} = e^{600k(2-1)}$$

$$\frac{4}{3} = e^{6001}$$

$$\ln\frac{4}{3} = 6001$$

$$\ln\frac{4}{3} = 600 \times \frac{\ln 2}{t_{1/2}}$$

$$t_{1/2} = 600 \frac{\ln 2}{\ln \frac{4}{3}} \sec$$

$$t_{1/2} = 600 \times \frac{\log 2}{\log 4 - \log 3}$$
 sec. = $10 \times \frac{0.3010}{0.6020 - 0.477}$ min

$$t_{1/2} = 24.08 \text{ min}$$

82. The pH at which Mg(OH)₂ [K_{sp} = 1×10^{-11}] begins to precipitate from a solution containing 0.10 M Mg²⁺ ions is

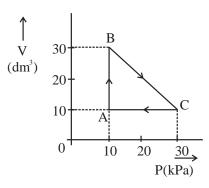
Ans. (09)

Sol. Precipitation when
$$Q_{sp} = K_{sp}$$

$$[Mg^{2+}][OH^{-}]^2 = 10^{-11}$$

$$0.1 \times [OH^{-}]^{2} = 10^{-11} \Rightarrow [OH^{-}] = 10^{-5}$$

$$\Rightarrow$$
 pOH = 5 \Rightarrow pH = 9


ALLEN AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD

83.

An ideal gas undergoes a cyclic transformation starting from the point A and coming back to the same point by tracing the path $A \to B \to C \to A$ as shown in the diagram. The total work done in the process is _____ J.

Ans. (200)

Sol. Work done is given by area enclosed in the P vs V cyclic graph or V vs P cyclic graph.

Sign of work is positive for clockwise cyclic process for V vs P graph.

$$W = \frac{1}{2} \times (30 - 10) \times (30 - 10) = 200 \text{ kPa} - \text{dm}^3$$
$$= 200 \times 1000 \text{ Pa} - \text{L} = 2 \text{ L-bar} = 200 \text{ J}$$

84. if IUPAC name of an element is "Unununnium" then the element belongs to nth group of periodic table. The value of n is

Ans. (11)

Sol. 111 belongs to 11th group

85. The total number of molecular orbitals formed from 2s and 2p atomic orbitals of a diatomic molecule

Ans. (08)

Sol. Two molecular orbitals σ 2s and σ *2s. Six molecular orbitals σ 2p_z and σ *2p_z. π 2p_x, π 2p_y and π *2p_x, π *2p_y **86.** On a thin layer chromatographic plate, an organic compound moved by 3.5 cm, while the solvent moved by 5 cm. The retardation factor of the organic compound is ____ × 10⁻¹

Ans. (07)

Distance travelled by

- Sol. Retardation factor = $\frac{\text{sample/organic compound}}{\text{Distance travelled by solvent}}$ = $\frac{3.5}{5} = 7 \times 10^{-1}$
- **87.** The compound formed by the reaction of ethanal with semicarbazide contains ____number of nitrogen atoms.

Ans. (03)

Sol.

$$CH_3-C = O + H_2N - NH - C - NH_2 \longrightarrow$$

$$H$$
Semicarbazide

$$CH_3 - CH = N - NH - C - NH_2$$

88. 0.05 cm thick coating of silver is deposited on a plate of 0.05 m² area. The number of silver atoms deposited on plate are ____ \times 10²³. (At mass Ag = 108, d = 7.9 g cm⁻³)

Ans. (11)

Sol. Volume of silver coating = $0.05 \times 0.05 \times 10000$ = 25 cm^3

Mass of silver deposited = 25×7.9 g

Moles of silver atoms =
$$\frac{25 \times 7.9}{108}$$

Number of silver atoms = $\frac{25 \times 7.9}{108} \times 6.023 \times 10^{23}$

$$= 11.01 \times 10^{23}$$

Ans. 11

 $2MnO_{4}^{-} + bI^{-} + cH_{2}O \rightarrow xI_{2} + yMnO_{2} + zOH^{-}$ **89.** If the above equation is balanced with integer coefficients, the value of z is ____

Ans. (08)

Sol. **Reduction Half** **Oxidation Half**

$$2MnO_4^- \rightarrow 2MnO_2$$

$$2I^- \rightarrow I_2 + 2e^-$$

$$2MnO_4^- + 4H_2O + 6e^- \rightarrow 2MnO_2 + 8OH^- \qquad 6I^- \rightarrow 3I_2 + 6e^-$$

$$6I^- \rightarrow 3I_2 + 6e^-$$

Adding oxidation half and reduction half, net reaction is

$$2MnO_4^- + 6I^- + 4H_2O \rightarrow 3I_2 + 2MnO_2 + 8OH^-$$

- \Rightarrow z = 8
- \Rightarrow Ans 8

The mass of sodium acetate (CH₃COONa) required 90. to prepare 250 mL of 0.35 M aqueous solution is g. (Molar mass of CH₃COONa is 82.02 g mol⁻¹)

Ans. (7)

Sol. Moles = Molarity \times Volume in litres

$$= 0.35 \times 0.25$$

 $Mass = moles \times molar mass$

$$= 0.35 \times 0.25 \times 82.02 = 7.18 \text{ g}$$

Ans. 7

