

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Wednesday 31⁵t January, 2024)

TIME:9:00 AM to 12:00 NOON

	CHEMISTRY		TEST PAPER WITH SOLUTION
	SECTION-A	63.	Identify the mixture that shows positive deviation
51.	Give below are two statements:		from Raoult's Law
	Statement-I : Noble gases have very high boiling		(1) $(CH_3)_2CO + C_6H_5NH_2$
	points.		
	Statement-II: Noble gases are monoatomic gases.		$(2) CHCl_3 + C_6H_6$
	They are held together by strong dispersion forces.		$(3) \operatorname{CHCl}_3 + (\operatorname{CH}_3)_2 \operatorname{CO}$
	Because of this they are liquefied at very low		(4) $(CH_3)_2CO + CS_2$
	temperature. Hence, they have very high boiling points. In the light of the above statements. choose the	Ans.	(4)
		Sol.	$(CH_3)_2CO + CS_2$ Exibits positive deviations from
	<i>correct answer</i> from the options given below:		Raoult's Law
	 (1) Statement I is false but Statement II is true. (2) Both Statement I and Statement II are true. 	64.	The compound that is white in color is
	(3) Statement I is true but Statement II is false.		(1) ammonium sulphide
	(4) Both Statement I and Statement II are false.		(2) lead sulphate
Ans.			(3) lead iodide
ol.	Statement I and II are False		(4) ammonium arsinomolybdate
	Noble gases have low boiling points		
	Noble gases are held together by weak dispersion forces.	Ans.	
2.	For the given reaction, choose the correct	Sol.	Lead sulphate-white
2.	expression of K_c from the following :-		Ammonium sulphide-soluble
			Lead iodide-Bright yellow Ammonium arsinomolybdate-yellow
	$\operatorname{Fe}_{(\operatorname{aq})}^{3+} + \operatorname{SCN}_{(\operatorname{aq})}^{-} \rightleftharpoons (\operatorname{FeSCN})_{(\operatorname{aq})}^{2+}$	65.	The metals that are employed in the batte
	(1) $K_{c} = \frac{\left[FeSCN^{2+}\right]}{\left[Fe^{3+}\right]\left[SCN^{-}\right]}$		industries are
	(1) $\mathbf{K}_{\mathrm{C}} = \left[\mathrm{Fe}^{3+}\right] \left[\mathrm{SCN}^{-}\right]$		A. Fe
	$[Fe^{3+}][SCN^-]$		B. Mn
	(2) $K_{c} = \frac{\left[Fe^{3+}\right]\left[SCN^{-}\right]}{\left[FeSCN^{2+}\right]}$		C. Ni
	$\begin{bmatrix} \mathbf{E}_{\mathbf{S}} \mathbf{C} \mathbf{N}^{2+} \end{bmatrix}$		D. Cr
	(3) $K_{c} = \frac{\left[FeSCN^{2+}\right]}{\left[Fe^{3+}\right]^{2}\left[SCN^{-}\right]^{2}}$		E. Cd
	[Fe][SCN]		Choose the correct answer from the options give
	$\left[\text{FeSCN}^{2+} \right]^2$		below:
	(4) $K_{\rm C} = \frac{\left[\text{FeSCN}^{2+} \right]^2}{\left[\text{Fe}^{3+} \right] \left[\text{SCN}^{-} \right]}$		(1) B, C and E only
ns.			(2) A, B, C, D and E
			(3) A, B, C and D only
ol.	$K_{c} = \frac{\text{Products ion conc.}}{\text{Reactants ion conc.}}$		(4) B, D and E only
	FeSCN ²⁺	Ans.	(1)
	$K_{\rm C} = \frac{\left[\text{FeSCN}^{2+} \right]}{\left[\text{Fe}^{3+} \right] \left[\text{SCN}^{-} \right]}$	Sol.	Mn, Ni and Cd metals used in battery industries.

ALLEN AI POWERED APP Free Crash Courses for Class 10th | NEET | JEE

1

- **66.** A species having carbon with sextet of electrons and can act as electrophile is called
 - (1) carbon free radical
 - (2) carbanion
 - (3) carbocation
 - (4) pentavalent carbon
- Ans. (3)

Sol.

Six electron species

- **67.** Identify the factor from the following that does not affect electrolytic conductance of a solution.
 - (1) The nature of the electrolyte added.
 - (2) The nature of the electrode used.
 - (3) Concentration of the electrolyte.
 - (4) The nature of solvent used.
- Ans. (2)
- **Sol.** Conductivity of electrolytic cell is affected by concentration of electrolyte, nature of electrolyte and nature of solvent.
- **68.** The product (C) in the below mentioned reaction is:
 - $CH_3 CH_2 CH_2 Br \frac{KOH_{(alc)}}{\Delta}$
 - (1) Propan-1-ol
 - (2) Propene
 - (3) Propyne
 - (4) Propan-2-ol

Ans. (4)

Sol.

$$CH_{3}-CH_{2}-Br \xrightarrow{KOH_{(ab)}} CH_{3}-CH=CH_{2}$$

$$\downarrow HBr$$

$$CH_{3}-CH-CH_{3} \xleftarrow{\Delta}_{KOH_{(ab)}} CH_{3}-CH-CH_{3}$$

$$\downarrow Br$$

69. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R: Assertion A: Alcohols react both as nucleophiles and electrophiles.

Reason R: Alcohols react with active metals such as sodium, potassium and aluminum to yield corresponding alkoxides and liberate hydrogen.

In the light of the above statements, choose the *correct answer* from the options given below:

- (1) A is false but R is true.
- (2) A is true but R is false.
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true but R is NOT the correct explanation of A

Ans. (4)

- **Sol.** As per NCERT, Assertion (A) and Reason (R) is correct but Reason (R) is not the correct explanation.
- **70.** The correct sequence of electron gain enthalpy of the elements listed below is
 - A. Ar
 - **B.** Br
 - **C.** F
 - D. S

Choose the *most appropriate* from the options given below:

- (1) C > B > D > A
- (2) A > D > B > C
- (3) A > D > C > B
- (4) D > C > B > A
- Ans. (2)

Sol. Element $\Delta_{eg}H(kJ/mol)$ F -333 S -200 Br -325 Ar +96

ALLEN AI POWERED APP Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD

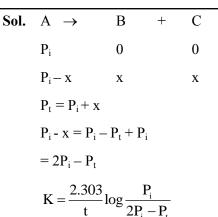
- 71. Identify correct statements from below:
 - A. The chromate ion is square planar.
 - B. Dichromates are generally prepared from chromates.
 - C. The green manganate ion is diamagnetic.
 - D. Dark green coloured K₂MnO₄ disproportionates in a neutral or acidic medium to give permanganate.
 - E. With increasing oxidation number of transition metal, ionic character of the oxides decreases.

Choose the correct answer from the options given below:

- (1) B, C, D only
- (2) A, D, E only
- (3) A, B, C only
- (4) B, D, E only

Ans. (4)

- A. CrO_4^{2-} is tetrahedral Sol.
 - B. $2Na_2CrO_4 + 2H^+ \rightarrow Na_2Cr_2O_7 + 2Na^+ + H_2O$
 - C. As per NCERT, green manganate is paramagnetic with 1 unpaired electron.
 - D. Statement is correct
 - E. Statement is correct
- 72. 'Adsorption' principle is used for which of the following purification method?
 - (1) Extraction
 - (2) Chromatography
 - (3) Distillation
 - (4) Sublimation


Ans. (2)

- Sol. Principle used in chromotography is adsorption.
- Integrated rate law equation for a first order gas 73. phase reaction is given by (where P_i is initial pressure and P_t is total pressure at time t)

(1)
$$k = \frac{2.303}{t} \times \log \frac{P_i}{(2P_i - P_t)}$$

(2) $k = \frac{2.303}{t} \times \log \frac{2P_i}{(2P_i - P_t)}$
(3) $k = \frac{2.303}{t} \times \log \frac{(2P_i - P_t)}{P_i}$
(4) $k = \frac{2.303}{t} \times \frac{P_i}{(2P_i - P_t)}$

AI POWERED APP

Ans. (1)

74. Given below are two statements: One is labelled as Assertion A and the other is labelled as Reason R: Assertion A: pK_a value of phenol is 10.0 while that of ethanol is 15.9.

Reason R: Ethanol is stronger acid than phenol.

In the light of the above statements, choose the correct answer from the options given below:

- (1) A is true but R is false.
- (2) A is false but R is true.
- (3) Both A and R are true and R is the correct explanation of A.
- (4) Both A and R are true but R is NOT the correct explanation of A.

Ans. (1)

- Sol. Phenol is more acidic than ethanol because conjugate base of phenoxide is more stable than ethoxide.
- 75. Given below are two statements:

Statement I: IUPAC name of HO-CH₂-(CH₂)₃-CH₂-COCH₃ is 7-hydroxyheptan-2-one.

Statement II: 2-oxoheptan-7-ol is the correct IUPAC name for above compound.

In the light of the above statements. choose the most appropriate answer from the options given below:

- (1) Statement I is correct but Statement II is incorrect.
- (2) Both Statement I and Statement II are incorrect.
- (3) Both Statement I and Statement II are correct.
- (4) Statement I is incorrect but Statement II is correct.

Ans. (1)

Sol. 7-Hydroxyheptan-2-one is correct IUPAC name

Free Crash Courses

for Class 10th | NEET | JEE

Final JEE-Main Exam January, 2024/31-01-2024/Morning Session

- **76.** The correct statements from following are:
 - A. The strength of anionic ligands can be explained by crystal field theory.
 - B. Valence bond theory does not give a quantitative interpretation of kinetic stability of coordination compounds.
 - C. The hybridization involved in formation of $[Ni(CN)_4]^{2-}$ complex is dsp².
 - D. The number of possible isomer(s) of $\operatorname{cis-[PtC1_2(en)_2]^{2+}}$ is one

Choose the correct answer from the options given below:

- (1) A, D only
- (2) A, C only
- (3) B, D only
- (4) B, C only

Ans. (4)

Sol. B. VBT does not explain stability of complex

C. Hybridisation of $[Ni(CN)_4]^{-2}$ is dsp².

- 77. The linear combination of atomic orbitals to form molecular orbitals takes place only when the combining atomic orbitals
 - A. have the same energy
 - B. have the minimum overlap
 - C. have same symmetry about the molecular axis
 - D. have different symmetry about the molecular axis

Choose the *most appropriate* from the options given below:

- (1) A, B, C only
- (2) A and C only
- (3) B, C, D only
- (4) B and D only

Ans. (2)

- Sol. * Molecular orbital should have maximum overlap
 - * Symmetry about the molecular axis should be similar
 - ALLEN AI POWERED APP

78.	Match List I with List II
/0.	

LIST-I		LIST-II	
A.	Glucose/NaHCO ₃ /Δ	I.	Gluconic acid
B.	Glucose/HNO ₃	II.	No reaction
C.	Glucose/HI/ Δ	III.	n-hexane
D.	Glucose/Bromine	IV.	Saccharic acid
	water		

Choose the correct answer from the options given below:

(1) A-IV, B-I, C-III, D-II

- (2) A-II, B-IV, C-III, D-I
- (3) A-III, B-II, C-I, D-IV (4) A-I, B-IV, C-III, D-II

(4) A-1 Ans. (2)

Sol. Glucose $\xrightarrow{\text{NaHCO}_3}$ no reaction

Glucose $\xrightarrow{\text{HNO}_3}$ saccharic acid

Glucose $\xrightarrow{\text{HI}}$ n-hexane

- Glucose $\xrightarrow{Br_2}{\Delta}$ Gluconic acid
- 79. Consider the oxides of group 14 elements SiO₂, GeO₂, SnO₂, PbO₂, CO and GeO. The amphoteric oxides are
 (1) GeO, GeO₂
 (2) SiO₂, GeO₂
 (3) SnO₂, PbO₂
 - $(3) SnO_2, TOC$ (4) SnO₂, CO

Ans. (3)

80.

Sol. SnO_2 and PbO_2 are amphoteric

LIST I (Technique)		LIST II (Application)		
A.	Distillation	I.	Separation of glycerol from spent-lye	
B.	Fractional distillation	II.	Aniline - Water mixture	
C.	Steam distillation	III.	Separation of crude oil fractions	
D.	Distillation under reduced pressure	IV.	Chloroform- Aniline	

Choose the correct answer from the options given below:

- (1) A-IV, B-I, C-II, D-III
- (2) A-IV, B-III, C-II. D-I
- (3) A-I. B-II, C-IV, D-III
- (4) A-II, B-III. C-I, D-IV

Ans. (2)

Sol. Fact (NCERT)

Free Crash Courses for Class 10th | NEET | JEE

Final JEE-Main Exam January, 2024/31-01-2024/Morning Session

SECTION-B

81. Molar mass of the salt from NaBr, NaNO₃, KI and CaF₂ which does not evolve coloured vapours on heating with concentrated H_2SO_4 is _____ g mol⁻¹, (Molar mass in g mol⁻¹ : Na : 23, N : 14, K : 39,

O: 16, Br: 80, I: 127, F: 19, Ca: 40

- Ans. (78)
- Sol. CaF_2 does not evolve any gas with concentrated H_2SO_4 .

NaBr \rightarrow evolve Br₂

 $NaNO_3 \rightarrow evolve NO_2$

 $KI \rightarrow evolve I_2$

82. The 'Spin only' Magnetic moment for $[Ni(NH_3)_6]^{2+}$ is_____× 10⁻¹ BM.

(given = Atomic number of Ni : 28)

Ans. (28)

Sol. NH_3 act as WFL with Ni^{2+}

 $Ni^{2+} = 3d^8$

11 11 11 1

No. of unpaired electron = 2

$$\mu = \sqrt{n(n+2)} = \sqrt{8} = 2.82$$
 BM
= 28.2 × 10⁻¹ BM

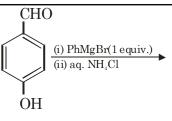
x = 28

83. Number of moles of methane required to produce $22g \operatorname{CO}_{2(g)}$ after combustion is $x \times 10^{-2}$ moles. The value of x is

Ans. (50)

Sol. $CH_{4(g)} + 2O_{2(g)} \rightarrow CO_{2(g)} + 2H_2O_{(\ell)}$

$$n_{CO_2} = \frac{22}{44} = 0.5$$
 moles


So moles of CH_4 required = 0.5 moles

ALLE

AI POWERED APP

x = 50

84. The product of the following reaction is P.

The number of hydroxyl groups present in the product P is_____.

Ans. (0)

85. The number of species from the following in which the central atom uses sp³ hybrid orbitals in its bonding is_____.

NH₃, SO₂, SiO₂, BeCl₂, CO₂, H₂O, CH₄, BF₃

Ans. (4)
Sol.
$$NH_3 \rightarrow sp^3$$

 $SO_2 \rightarrow sp^2$
 $SiO_2 \rightarrow sp^3$
 $BeCl_2 \rightarrow sp$
 $CO_2 \rightarrow sp$
 $H_2O \rightarrow sp^3$
 $CH_4 \rightarrow sp^3$
 $BF_3 \rightarrow sp^2$

86.
$$CH_{3}CH_{2}Br + NaOH \xrightarrow{C_{2}H_{3}OH} Product A$$

 $H_{2}O \rightarrow Product B$

The total number of hydrogen atoms in product A and product B is_____.

Sol.
$$CH_3CH_2Br + NaOH \longrightarrow CH_2=CH_2$$

 $H_2O \longrightarrow CH_3-CH_2-OH$

Total number of hydrogen atom in A and B is 10

Number of alkanes obtained on electrolysis of a mixture of CH₃COONa and C₂H₅COONa is____.

Free Crash Courses for Class 10^{th} | NEET | JEE

Ans. (3) Sol. $CH_3COONa \rightarrow \dot{C}H_3$ $C_2H_5COONa \rightarrow \dot{C}_2H_5$ $2\dot{C}_2H_5 \rightarrow CH_3 - CH_2 - CH_2 - CH_3$ $2\dot{C}H_3 \rightarrow CH_3 - CH_3$ $\dot{C}H_3 + \dot{C}_2H_5 \rightarrow CH_3 - CH_2 - CH_3$ 88. Consider the following reaction at 298 K. $\frac{3}{2}O_{2(g)} \rightleftharpoons O_{3(g)}.K_p = 2.47 \times 10^{-29}.$

> $\Delta_{\rm r} G^{\Theta}$ for the reaction is _____ kJ. (Given R = 8.314 JK⁻¹ mol⁻¹)

Ans. (163)

Sol.
$$\frac{3}{2}O_{2(g)} \rightleftharpoons O_{3(g)}.K_{P} = 2.47 \times 10^{-29}.$$

 $\Delta_{r}G^{\Theta} = -RT \ln K_{P}$
 $= -8.314 \times 10^{-3} \times 298 \times \ln (2.47 \times 10^{-29})$
 $= -8.314 \times 10^{-3} \times 298 \times (-65.87)$
 $= 163.19 \text{ kJ}$

89. The ionization energy of sodium in kJ mol⁻¹. If electromagnetic radiation of wavelength 242 nm is just sufficient to ionize sodium atom is _____.

Ans. (494)

Sol.
$$E = \frac{1240}{\lambda(nm)} eV$$

= $\frac{1240}{242} eV$
= 5.12 eV
= 5.12 × 1.6 × 10⁻¹⁹
= 8.198 × 10⁻¹⁹ J/atom
= 494 kJ/mol

90. One Faraday of electricity liberates $x \times 10^{-1}$ gram atom of copper from copper sulphate, x is_____.

Ans. (5)

Sol. $Cu^{2^+} + 2e^- \rightarrow Cu$

2 Faraday \rightarrow 1 mol Cu 1 Faraday \rightarrow 0.5 mol Cu deposit

 $0.5 \text{ mol} = 0.5 \text{ g atom} = 5 \times 10^{-1}$

ALLEN AI POWERED APP

Free Crash Courses for Class 10th | NEET | JEE

