FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Thursday 01st February, 2024)
TIME : 3: 00 PM to 06: 00 PM

MATHEMATICS

SECTION-A

1. Let $f(\mathrm{x})=\left|2 \mathrm{x}^{2}+5\right| \mathrm{x}|-3|, \mathrm{x} \in \mathrm{R}$. If m and n denote the number of points where f is not continuous and not differentiable respectively, then $\mathrm{m}+\mathrm{n}$ is equal to :
(1) 5
(2) 2
(3) 0
(4) 3

Ans. (4)
Sol. $f(x)=\left|2 x^{2}+5\right| x|-3|$
Graph of $y=\left|2 x^{2}+5 x-3\right|$

Number of points of discontinuity $=0=m$ Number of points of non-differentiability $=3=n$
2. Let α and β be the roots of the equation $\mathrm{px}^{2}+\mathrm{qx}-$ $r=0$, where $p \neq 0$. If p, q and r be the consecutive terms of a non-constant G.P and $\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$, then the value of $(\alpha-\beta)^{2}$ is :
(1) $\frac{80}{9}$
(2) 9
(3) $\frac{20}{3}$
(4) 8

Ans. (1)

TEST PAPER WITH SOLUTION

Sol. $\mathrm{px}^{2}+\mathrm{qx}-\mathrm{r}=0 \ll_{\beta}^{\alpha}$
$\mathrm{p}=\mathrm{A}, \mathrm{q}=\mathrm{AR}, \mathrm{r}=\mathrm{AR}^{2}$
$A x^{2}+A R x-A R^{2}=0$
$x^{2}+R x-R^{2}=0<{ }_{\beta}^{\alpha}$
$\because \frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{4}$
$\therefore \frac{\alpha+\beta}{\alpha \beta}=\frac{3}{4} \Rightarrow \frac{-\mathrm{R}}{-\mathrm{R}^{2}}=\frac{3}{4} \Rightarrow \mathrm{R}=\frac{4}{3}$
$(\alpha-\beta)^{2}=(\alpha+\beta)^{2}-4 \alpha \beta=R^{2}-4\left(-R^{2}\right)=5\left(\frac{16}{9}\right)$
$=80 / 9$
3. The number of solutions of the equation $4 \sin ^{2} x-4$ $\cos ^{3} x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$ is :
(1) 1
(2) 3
(3) 2
(4) 0

Ans. (4)
Sol. $4 \sin ^{2} x-4 \cos ^{3} x+9-4 \cos x=0 ; x \in[-2 \pi, 2 \pi]$
$4-4 \cos ^{2} x-4 \cos ^{3} x+9-4 \cos x=0$
$4 \cos ^{3} x+4 \cos ^{2} x+4 \cos x-13=0$
$4 \cos ^{3} x+4 \cos ^{2} x+4 \cos x=13$
L.H.S. ≤ 12 can't be equal to 13 .
4. The value of $\int_{0}^{1}\left(2 x^{3}-3 x^{2}-x+1\right)^{\frac{1}{3}} d x$ is equal to:
(1) 0
(2) 1
(3) 2
(4) -1

Ans. (1)
Sol. $I=\int_{0}^{1}\left(2 x^{3}-3 x^{2}-x+1\right)^{\frac{1}{3}} d x$
Using $\int_{0}^{2 a} f(x) d x$ where $f(2 a-x)=-f(x)$
Here

$$
f(1-x)=f(x)
$$

$\therefore \quad \mathrm{I}=0$
5. Let P be a point on the ellipse $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$. Let the line passing through P and parallel to y -axis meet the circle $x^{2}+y^{2}=9$ at point Q such that P and Q are on the same side of the x -axis. Then, the eccentricity of the locus of the point R on $P Q$ such that $\mathrm{PR}: \mathrm{RQ}=4: 3$ as P moves on the ellipse, is :
(1) $\frac{11}{19}$
(2) $\frac{13}{21}$
(3) $\frac{\sqrt{139}}{23}$
(4) $\frac{\sqrt{13}}{7}$

Ans. (4)

Sol.

4		

$\mathrm{h}=3 \cos \theta$;
$\mathrm{k}=\frac{18}{7} \sin \theta$
\therefore locus $=\frac{\mathrm{x}^{2}}{9}+\frac{49 \mathrm{y}^{2}}{324}=1$
$e=\sqrt{1-\frac{324}{49 \times 9}}=\frac{\sqrt{117}}{21}=\frac{\sqrt{13}}{7}$
6. Let m and n be the coefficients of seventh and thirteenth terms respectively in the expansion of $\left(\frac{1}{3} \mathrm{x}^{\frac{1}{3}}+\frac{1}{2 \mathrm{x}^{\frac{2}{3}}}\right)^{18}$. Then $\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}$ is :
(1) $\frac{4}{9}$
(2) $\frac{1}{9}$
(3) $\frac{1}{4}$
(4) $\frac{9}{4}$

Ans. (4)

Sol. $\left(\frac{x^{\frac{1}{3}}}{3}+\frac{x^{\frac{-2}{3}}}{}\right)^{18}$
$t_{7}={ }^{18} c_{6}\left(\frac{x^{\frac{1}{3}}}{3}\right)^{12}\left(\frac{x^{\frac{-2}{3}}}{2}\right)^{6}={ }^{18} c_{6} \frac{1}{(3)^{12}} \cdot \frac{1}{2^{6}}$
$\mathrm{t}_{13}={ }^{18} \mathrm{c}_{12}\left(\frac{\mathrm{x}^{\frac{1}{3}}}{3}\right)^{6}\left(\frac{\mathrm{x}^{\frac{-2}{3}}}{2}\right)^{12}={ }^{18} \mathrm{c}_{12} \frac{1}{(3)^{6}} \cdot \frac{1}{2^{12}} \cdot \mathrm{x}^{-6}$
$\mathrm{m}={ }^{18} \mathrm{c}_{6} \cdot 3^{-12} \cdot 2^{-6}: \mathrm{n}={ }^{18} \mathrm{c}_{12} \cdot 2^{-12} \cdot 3^{-6}$
$\left(\frac{\mathrm{n}}{\mathrm{m}}\right)^{\frac{1}{3}}=\left(\frac{2^{-12} \cdot 3^{-6}}{3^{-12} \cdot 2^{-6}}\right)^{\frac{1}{3}}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
7. Let α be a non-zero real number. Suppose $f: \mathrm{R} \rightarrow$ R is a differentiable function such that $f(0)=2$ and $\lim _{x \rightarrow-\infty} f(x)=1$. If $f^{\prime}(x)=\alpha f(x)+3$, for all $x \in R$, then $f\left(-\log _{2} 2\right)$ is equal to \qquad .
(1) 3
(2) 5
(3) 9
(4) 7

Ans. (3 OR BONUS)

Sol. $f(0)=2, \lim _{x \rightarrow-\infty} f(x)=1$
$\mathrm{f}^{\prime}(\mathrm{x})-\mathrm{x.f}(\mathrm{x})=3$
I.F $=e^{-a x}$
$y\left(e^{-\alpha x}\right)=\int 3 . e^{-\alpha x} d x$
$f(x) .\left(e^{-\alpha x}\right)=\frac{3 e^{-\alpha x}}{-\alpha}+c$
$\mathrm{x}=0 \Rightarrow 2=\frac{-3}{\alpha}+\mathrm{c} \Rightarrow \frac{3}{\alpha}=\mathrm{c}-2$
$\mathrm{f}(\mathrm{x})=\frac{-3}{\alpha}+\mathrm{c} . \mathrm{e}^{\alpha \mathrm{x}}$
$\mathrm{x} \rightarrow-\infty \Rightarrow 1=\frac{-3}{\alpha}+\mathrm{c}(0)$
$\alpha=-3 \therefore \mathrm{c}=1$
$\mathrm{f}(-\ln 2)=\frac{-3}{\alpha}+\mathrm{c} . \mathrm{e}^{\alpha \mathrm{x}}$
$=1+\mathrm{e}^{3 \ln 2}=9$
(But α should be greater than 0 for finite value of c)

OVERSEAS
8. Let P and Q be the points on the line $\frac{x+3}{8}=\frac{y-4}{2}=\frac{z+1}{2}$ which are at a distance of 6 units from the point $\mathrm{R}(1,2,3)$. If the centroid of the triangle PQR is (α, β, γ), then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is:
(1) 26
(2) 36
(3) 18
(4) 24

Ans. (3)

Sol.

$\mathrm{P}(8 \lambda-3,2 \lambda+4,2 \lambda-1)$
$\mathrm{PR}=6$
$(8 \lambda-4)^{2}+(2 \lambda+2)^{2}+(2 \lambda-4)^{2}=36$
$\lambda=0,1$
Hence $\mathrm{P}(-3,4,-1) \& \mathrm{Q}(5,6,1)$
Centroid of $\triangle \mathrm{PQR}=(1,4,1) \equiv(\alpha, \beta, \gamma)$
$\alpha^{2}+\beta^{2}+\gamma^{2}=18$
9. Consider a $\triangle \mathrm{ABC}$ where $\mathrm{A}(1,2,3),, \mathrm{B}(-2,8,0)$ and $\mathrm{C}(3,6,7)$. If the angle bisector of $\angle \mathrm{BAC}$ meets the line $B C$ at D, then the length of the projection of the vector $\overrightarrow{A D}$ on the vector $\overrightarrow{A C}$ is:
(1) $\frac{37}{2 \sqrt{38}}$
(2) $\frac{\sqrt{38}}{2}$
(3) $\frac{39}{2 \sqrt{38}}$
(4) $\sqrt{19}$

Ans. (1)

$(-2,8,0)$
Sol.
$\mathrm{A}(1,3,2) ; \mathrm{B}(-2,8,0) ; \mathrm{C}(3,6,7)$;
$\overrightarrow{\mathrm{AC}}=2 \hat{\mathrm{i}}+3 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$
$\mathrm{AB}=\sqrt{9+25+4}=\sqrt{38}$
$\mathrm{AC}=\sqrt{4+9-25}=\sqrt{38}$
$\overrightarrow{\mathrm{AD}}=\frac{1}{2} \hat{\mathrm{i}}-4 \hat{\mathrm{j}}-\frac{3}{2} \hat{\mathrm{k}}=\frac{1}{2}(\hat{\mathrm{i}}-8 \hat{\mathrm{j}}-3 \hat{\mathrm{k}})$
Length of projection of $\overrightarrow{\mathrm{AD}}$ on $\overrightarrow{\mathrm{AC}}$
$=\left|\frac{\overrightarrow{\mathrm{AD}} \cdot \overrightarrow{\mathrm{AC}}}{|\overrightarrow{\mathrm{AC}}|}\right|=\frac{37}{2 \sqrt{38}}$
10. Let S_{n} denote the sum of the first n terms of an arithmetic progression. If $\mathrm{S}_{10}=390$ and the ratio of the tenth and the fifth terms is $15: 7$, then $\mathrm{S}_{15}-\mathrm{S}_{5}$ is equal to:
(1) 800
(2) 890
(3) 790
(4) 690

Ans. (3)
Sol. $\quad \mathrm{S}_{10}=390$
$\frac{10}{2}[2 a+(10-1) d]=390$
$\Rightarrow 2 \mathrm{a}+9 \mathrm{~d}=78$
$\frac{\mathrm{t}_{10}}{\mathrm{t}_{5}}=\frac{15}{7} \Rightarrow \frac{\mathrm{a}+9 \mathrm{~d}}{\mathrm{a}+4 \mathrm{~d}}=\frac{15}{7} \Rightarrow 8 \mathrm{a}=3 \mathrm{~d}$
From (1) \& (2)

$$
\begin{equation*}
a=3 \& d=8 \tag{2}
\end{equation*}
$$

$\mathrm{S}_{15}-\mathrm{S}_{5}=\frac{15}{2}(6+14 \times 8)-\frac{5}{2}(6+4 \times 8)$
$=\frac{15 \times 118-5 \times 38}{2}=790$
11. If $\int_{0}^{\frac{\pi}{3}} \cos ^{4} x d x=a \pi+b \sqrt{3}$, where a and b are rational numbers, then $9 a+8 b$ is equal to :
(1) 2
(2) 1
(3) 3
(4) $\frac{3}{2}$

Ans. (1)
Sol. $\int_{0}^{\pi / 3} \cos ^{4} x d x$
$=\int_{0}^{\pi / 3}\left(\frac{1+\cos 2 x}{2}\right)^{2} d x$
$=\frac{1}{4} \int_{0}^{\pi / 3}\left(1+2 \cos 2 x+\cos ^{2} 2 x\right) d x$
$=\frac{1}{4}\left[\int_{0}^{\pi / 3} \mathrm{dx}+2 \int_{0}^{\pi / 3} \cos 2 \mathrm{xdx}+\int_{0}^{\pi / 3} \frac{1+\cos 4 \mathrm{x}}{2} \mathrm{dx}\right]$
$=\frac{1}{4}\left[\frac{\pi}{3}+(\sin 2 \mathrm{x})_{0}^{\pi / 3}+\frac{1}{2}\left(\frac{\pi}{3}\right)+\frac{1}{8}(\sin 4 \mathrm{x})_{0}^{\pi / 3}\right]$
$=\frac{1}{4}\left[\frac{\pi}{3}+(\sin 2 \mathrm{x})_{0}^{\pi / 3}+\frac{1}{2}\left(\frac{\pi}{3}\right)+\frac{1}{8}(\sin 4 \mathrm{x})_{0}^{\pi / 3}\right]$
$=\frac{1}{4}\left[\frac{\pi}{2}+\frac{\sqrt{3}}{2}+\frac{1}{8} \times\left(-\frac{\sqrt{3}}{2}\right)\right]$
$=\frac{\pi}{2}+\frac{7 \sqrt{3}}{64}$
$\therefore \mathrm{a}=\frac{1}{8} ; \mathrm{b}=\frac{7}{64}$
$\therefore 9 a+8 b=\frac{9}{8}+\frac{7}{8}=2$
12. If z is a complex number such that $|z| \geq 1$, then the minimum value of $\left|\mathrm{z}+\frac{1}{2}(3+4 i)\right|$ is:
(1) $\frac{5}{2}$
(2) 2
(3) 3
(4) $\frac{3}{2}$

Ans. (Bonus)

Sol. $|z| \geq 1$

Min. value of $\left|z+\frac{3}{2}+2 i\right|$ is actually zero.
13. If the domain of the function $f(x)=\frac{\sqrt{x^{2}-25}}{\left(4-x^{2}\right)}$ $+\log _{10}\left(\mathrm{x}^{2}+2 \mathrm{x}-15\right)$ is $(-\infty, \alpha) \mathrm{U}[\beta, \infty)$, then $\alpha^{2}+\beta^{3}$ is equal to :
(1) 140
(2) 175
(3) 150
(4) 125

Ans. (3)
Sol. $f(\mathrm{x})=\frac{\sqrt{\mathrm{x}^{2}-25}}{4-\mathrm{x}^{2}}+\log _{10}\left(\mathrm{x}^{2}+2 \mathrm{x}-15\right)$
Domain : $\mathrm{x}^{2}-25 \geq 0 \Rightarrow \mathrm{x} \in(-\infty,-5] \cup[5, \infty)$
$4-x^{2} \neq 0 \Rightarrow x \neq\{-2,2\}$
$x^{2}+2 x-15>0 \Rightarrow(x+5)(x-3)>0$
$\Rightarrow \mathrm{x} \in(-\infty,-5) \cup(3, \infty)$
$\therefore \mathrm{x} \in(-\infty,-5) \cup[5, \infty)$
$\alpha=-5 ; \beta=5$
$\therefore \alpha^{2}+\beta^{3}=150$
14. Consider the relations R_{1} and R_{2} defined as $a R_{1} b$ $\Leftrightarrow a^{2}+b^{2}=1$ for all $a, b, \in R$ and $(a, b) R_{2}(c, d)$
$\Leftrightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$ for all $(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{N} \times \mathrm{N}$. Then
(1) Only R_{1} is an equivalence relation
(2) Only R_{2} is an equivalence relation
(3) R_{1} and R_{2} both are equivalence relations
(4) Neither R_{1} nor R_{2} is an equivalence relation

Ans. (2)
Sol. $\quad \mathrm{R}_{1} \mathrm{~b} \Leftrightarrow \mathrm{a}^{2}+\mathrm{b}^{2}=1 ; \mathrm{a}, \mathrm{b} \in \mathrm{R}$
$(\mathrm{a}, \mathrm{b}) \mathrm{R}_{2}(\mathrm{c}, \mathrm{d}) \Leftrightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c} ;(\mathrm{a}, \mathrm{b}),(\mathrm{c}, \mathrm{d}) \in \mathrm{N}$ for R_{1} : Not reflexive symmetric not transitive for $R_{2}: R_{2}$ is reflexive, symmetric and transitive Hence only R_{2} is equivalence relation.
15. If the mirror image of the point $P(3,4,9)$ in the line $\frac{x-1}{3}=\frac{y+1}{2}=\frac{z-2}{1}$ is (α, β, γ), then $14(\alpha+\beta+\gamma)$ is :
(1) 102
(2) 138
(3) 108
(4) 132

Ans. (3)

Sol.

$\mathrm{A}(\alpha, \beta, \gamma)$
$\overrightarrow{\mathrm{PN}} \cdot \overrightarrow{\mathrm{b}}=0$?
$3(3 \lambda-2)+2(2 \lambda-5)+(\lambda-7)=0$
$14 \lambda=23 \Rightarrow \lambda=\frac{23}{14}$
$\mathrm{N}\left(\frac{83}{14}, \frac{32}{14}, \frac{51}{14}\right)$
$\therefore \frac{\alpha+3}{2}=\frac{83}{14} \Rightarrow \alpha=\frac{62}{7}$
$\frac{\beta+4}{2}=\frac{32}{14} \Rightarrow \beta=\frac{4}{7}$
$\frac{\gamma+9}{2}=\frac{51}{14} \Rightarrow \gamma=\frac{-12}{7}$
Ans. $14(\alpha+\beta+r)=108$
16. Let $f(x)=\left\{\begin{array}{l}x-1, x \text { is even, } \\ 2 x, \quad x \text { is odd, }\end{array} \quad x \in N\right.$. If for some
$a \in N, f(f(f(a)))=21$, then $\lim _{x \rightarrow a^{-}}\left\{\frac{|x|^{3}}{a}-\left[\frac{x}{a}\right]\right\}$,
where [t] denotes the greatest integer less than or equal to t, is equal to :
(1) 121
(2) 144
(3) 169
(4) 225

Ans. (2)

Sol. $f(\mathrm{x})=\left\{\begin{array}{cc}\mathrm{x}-1 ; & \mathrm{x}=\text { even } \\ 2 \mathrm{x} ; & \mathrm{x}=\text { odd }\end{array}\right.$
$f(f(f(\mathrm{a})))=21$
$\mathbf{C}-\mathbf{1}$: If $\mathrm{a}=$ even

$$
f(a)=a-1=\text { odd }
$$

$\mathrm{f}(\mathrm{f}(\mathrm{a}))=2(\mathrm{a}-1)=$ even
$f(f(f(\mathrm{a})))=2 \mathrm{a}-3=21 \Rightarrow \mathrm{a}=12$
$\mathbf{C - 2 : ~ I f ~} \mathrm{a}=$ odd

$$
\begin{aligned}
& f(\mathrm{a})=2 \mathrm{a}=\text { even } \\
& f(f(\mathrm{a}))=2 \mathrm{a}-1=\text { odd } \\
& f(f(f(\mathrm{a})))=4 \mathrm{a}-2=21 \text { (Not possible) }
\end{aligned}
$$

Hence $\mathrm{a}=12$
Now
$\lim _{x \rightarrow 12^{-}}\left(\frac{|x|^{3}}{2}-\left[\frac{x}{12}\right]\right)$
$=\lim _{x \rightarrow 12^{-}} \frac{|x|^{3}}{12}-\lim _{x \rightarrow 12^{-}}\left[\frac{x}{12}\right]$
$=144-0=144$.
17. Let the system of equations $x+2 y+3 z=5,2 x+$ $3 y+z=9,4 x+3 y+\lambda z=\mu$ have infinite number of solutions. Then $\lambda+2 \mu$ is equal to :
(1) 28
(2) 17
(3) 22
(4) 15

Ans. (2)
Sol. $x+2 y+3 z=5$
$2 x+3 y+z=9$
$4 x+3 y+\lambda z=\mu$
for infinite following $\Delta=\Delta_{1}=\Delta_{2}=\Delta_{3}=0$
$\Delta=\left|\begin{array}{lll}1 & 2 & 3 \\ 2 & 3 & 1 \\ 4 & 3 & \lambda\end{array}\right|=0 \Rightarrow \lambda=-13$
$\Delta_{1}=\left|\begin{array}{ccc}5 & 2 & 3 \\ 9 & 3 & 1 \\ \mu & 3 & -13\end{array}\right|=0 \Rightarrow \mu=15$
$\Delta_{2}=\left|\begin{array}{ccc}1 & 5 & 3 \\ 2 & 9 & 1 \\ 4 & 15 & -13\end{array}\right|=0$
$\Delta_{3}=\left|\begin{array}{ccc}1 & 2 & 5 \\ 2 & 3 & 9 \\ 4 & 3 & 15\end{array}\right|=0$
for $\lambda=-13, \mu=15$ system of equation has infinite solution hence $\lambda+2 \mu=17$
18. Consider 10 observation $x_{1}, x_{2}, \ldots, x_{10}$. such that $\sum_{i=1}^{10}\left(x_{i}-\alpha\right)=2$ and $\sum_{i=1}^{10}\left(x_{i}-\beta\right)^{2}=40$, where α, β are positive integers. Let the mean and the variance of the observations be $\frac{6}{5}$ and $\frac{84}{25}$ respectively. The $\frac{\beta}{\alpha}$ is equal to :
(1) 2
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) 1

Ans. (1)
Sol. $\mathrm{x}_{1}, \mathrm{x}_{2} \ldots \ldots . \mathrm{x}_{10}$
$\sum_{\mathrm{i}=1}^{10}\left(\mathrm{x}_{\mathrm{i}}-\alpha\right)=2 \Rightarrow \sum_{\mathrm{i}=1}^{10} \mathrm{x}_{\mathrm{i}}-10 \alpha=2$
Mean $\mu=\frac{6}{5}=\frac{\sum x_{i}}{10}$
$\therefore \quad \Sigma \mathrm{x}_{\mathrm{i}}=12$

$$
10 \alpha+2=12 \quad \therefore \alpha=1
$$

Now $\sum_{i=1}^{10}\left(x_{i}-\beta\right)^{2}=40$ Let $y_{i}=x_{i}-\beta$
$\therefore \sigma_{\mathrm{y}}^{2}=\frac{1}{10} \sum \mathrm{y}_{\mathrm{i}}^{2}-(\overline{\mathrm{y}})^{2}$
$\sigma_{x}^{2}=\frac{1}{10} \sum\left(x_{i}-\beta\right)^{2}-\left(\frac{\sum_{i=1}^{10}\left(x_{i}-\beta\right)}{10}\right)^{2}$
$\frac{84}{25}=4-\left(\frac{12-10 \beta}{10}\right)^{2}$
$\therefore\left(\frac{6-5 \beta}{5}\right)^{2}=4-\frac{84}{25}=\frac{16}{25}$
$6-5 \beta= \pm 4 \Rightarrow \beta=\frac{2}{5}$ (not possible) or $\beta=2$
Hence $\frac{\beta}{\alpha}=2$
19. Let Ajay will not appear in JEE exam with probability $\mathrm{p}=\frac{2}{7}$, while both Ajay and Vijay will appear in the exam with probability $\mathrm{q}=\frac{1}{5}$. Then the probability, that Ajay will appear in the exam and Vijay will not appear is :
(1) $\frac{9}{35}$
(2) $\frac{18}{35}$
(3) $\frac{24}{35}$
(4) $\frac{3}{35}$

Ans. (2)

$\mathrm{P}(\overline{\mathrm{A}})=\frac{2}{7}=\mathrm{p}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{V})=\frac{1}{5}=\mathrm{q}$
$P(A)=\frac{5}{7}$
Ans. $\mathrm{P}(\mathrm{A} \cap \overline{\mathrm{V}})=\frac{18}{35}$
20. Let the locus of the mid points of the chords of circle $x^{2}+(y-1)^{2}=1$ drawn from the origin intersect the line $x+y=1$ at P and Q. Then, the length of PQ is :
(1) $\frac{1}{\sqrt{2}}$
(2) $\sqrt{2}$
(3) $\frac{1}{2}$
(4) 1

Ans. (1)

Sol.

$\mathrm{m}_{\mathrm{OM}} \cdot \mathrm{m}_{\mathrm{CM}}=-1$
$\frac{\mathrm{k}}{\mathrm{h}} \cdot \frac{\mathrm{k}-1}{\mathrm{~h}}=-1$
\therefore locus is $\mathrm{x}^{2}+\mathrm{y}(\mathrm{y}-1)=0$
$x^{2}+y^{2}-y=0$

$\mathrm{p}=\left|\frac{1 / 2}{\sqrt{2}}\right| \quad \mathrm{p}=\frac{1}{2 \sqrt{2}}$
$\mathrm{PQ}=2 \sqrt{\mathrm{r}^{2}-\mathrm{p}^{2}}$
$=2 \sqrt{\frac{1}{4}-\frac{1}{8}}=\frac{1}{\sqrt{2}}$

SECTION-B

21. If three successive terms of a G.P. with common ratio $r(r>1)$ are the lengths of the sides of a triangle and [r] denotes the greatest integer less than or equal to r, then $3[r]+[-r]$ is equal to :

Ans. (1)
Sol. a, ar, $\mathrm{ar}^{2} \rightarrow$ G.P.
Sum of any two sides $>$ third side
$a+a r>a r^{2}, a+a r^{2}>a r, a r+a r^{2}>a$
$\mathrm{r}^{2}-\mathrm{r}-1<0$
$\mathrm{r} \in\left(\frac{1-\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
$\mathrm{r}^{2}-\mathrm{r}+1>0$
always true

$$
\begin{align*}
& \mathrm{r}^{2}+\mathrm{r}-1>0 \\
& \mathrm{r} \in\left(-\infty, \frac{-1-\sqrt{5}}{2}\right) \cup\left(\frac{-1+\sqrt{5}}{2}, \infty\right) \tag{2}
\end{align*}
$$

Taking intersection of (1), (2)
$r \in\left(\frac{-1+\sqrt{5}}{2}, \frac{1+\sqrt{5}}{2}\right)$
As $\mathrm{r}>1$
$\mathrm{r} \in\left(1, \frac{1+\sqrt{5}}{2}\right)$
$[\mathrm{r}]=1[-\mathrm{r}]=-2$
$3[r]+[-r]=1$
22. Let $A=I_{2}-M M^{T}$, where M is real matrix of order 2×1 such that the relation $M^{T} M=I_{1}$ holds. If λ is a real number such that the relation $\mathrm{AX}=\lambda \mathrm{X}$ holds for some non-zero real matrix X of order 2×1, then the sum of squares of all possible values of λ is equal to :

Ans. (2)
Sol. $A=I_{2}-2 M^{T}$
$A^{2}=\left(I_{2}-2 M M^{T}\right)\left(I_{2}-2 M M^{T}\right)$
$=\mathrm{I}_{2}-2 \mathrm{MM}^{\mathrm{T}}-2 \mathrm{MM}^{\mathrm{T}}+4 \mathrm{MM}^{\mathrm{T}} \mathrm{MM}^{\mathrm{T}}$
$=\mathrm{I}_{2}-4 \mathrm{MM}^{\mathrm{T}}+4 \mathrm{MM}^{\mathrm{T}}$
$=\mathrm{I}_{2}$
$A X=\lambda X$
$\mathrm{A}^{2} \mathrm{X}=\lambda \mathrm{AX}$
$\mathrm{X}=\lambda(\lambda \mathrm{X})$
$X=\lambda^{2} X$
$\mathrm{X}\left(\lambda^{2}-1\right)=0$
$\lambda^{2}=1$
$\lambda= \pm 1$
Sum of square of all possible values $=2$
23. Let $\mathrm{f}:(0, \infty) \rightarrow \mathrm{R}$ and $\mathrm{F}(\mathrm{x})=\int_{0}^{\mathrm{x}} \mathrm{tf}(\mathrm{t}) \mathrm{dt}$. If $\mathrm{F}\left(\mathrm{x}^{2}\right)=$ $x^{4}+x^{5}$, then $\sum_{r=1}^{12} f\left(r^{2}\right)$ is equal to :
Ans. (219)
Sol. $F(x)=\int_{0}^{x} t \cdot f(t) d t$

$$
F^{1}(x)=x f(x)
$$

Given

$$
\begin{aligned}
& F\left(x^{2}\right)=x^{4}+x^{5}, \quad \text { let } x^{2}=t \\
& F(t)=t^{2}+t^{5 / 2} \\
& F^{\prime}(t)=2 t+5 / 2 \mathrm{t}^{3 / 2} \\
& t \cdot f(t)=2 t+5 / 2 \mathrm{t}^{3 / 2} \\
& \mathrm{f}(\mathrm{t})=2+5 / 2 \mathrm{r}^{1 / 2} \\
& \sum_{\mathrm{r}=1}^{12} \mathrm{f}\left(\mathrm{r}^{2}\right)=\sum_{\mathrm{r}=1}^{12} 2+\frac{5}{2} \mathrm{r} \\
& =24+5 / 2\left[\frac{12(13)}{2}\right] \\
& =219
\end{aligned}
$$

24. If $y=\frac{(\sqrt{x}+1)\left(x^{2}-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^{2} x-5\right) \cos ^{3} x$, then $96 y^{\prime}\left(\frac{\pi}{6}\right)$ is equal to :
Ans. (105)
Sol. $y=\frac{(\sqrt{x}+1)\left(x^{2}-\sqrt{x}\right)}{x \sqrt{x}+x+\sqrt{x}}+\frac{1}{15}\left(3 \cos ^{2} x-5\right) \cos ^{3} x$ $y=\frac{(\sqrt{x}+1)(\sqrt{x})\left((\sqrt{x})^{3}-1\right)}{(\sqrt{x})\left((\sqrt{x})^{2}+(\sqrt{x})+1\right)}+\frac{1}{5} \cos ^{5} x-\frac{1}{3} \cos ^{3} x$
$\mathrm{y}=(\sqrt{\mathrm{x}}+1)(\sqrt{\mathrm{x}}-1)+\frac{1}{5} \cos ^{5} \mathrm{x}-\frac{1}{3} \cos ^{3} \mathrm{x}$
$y^{\prime}=1-\cos ^{4} x \cdot(\sin x)+\cos ^{2} x(\sin x)$
$y^{\prime}\left(\frac{\pi}{6}\right)=1-\frac{9}{16} \times \frac{1}{2}+\frac{3}{4} \times \frac{1}{2}$
$=\frac{32-9+12}{32}=\frac{35}{32}$
$=96 \mathbf{y}^{\prime}\left(\frac{\boldsymbol{\pi}}{\mathbf{6}}\right)=105$
25. Let $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathbf{j}}+\hat{\mathbf{k}}, \quad \overrightarrow{\mathrm{b}}=-\hat{\mathbf{i}}-8 \hat{\mathbf{j}}+2 \hat{\mathbf{k}} \quad$ and $\overrightarrow{\mathbf{c}}=4 \hat{\mathbf{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \hat{\mathrm{k}}$ be three vectors such that $\overrightarrow{\mathbf{b}} \times \overrightarrow{\mathbf{a}}=\overrightarrow{\mathbf{c}} \times \overrightarrow{\mathbf{a}}$. If the angle between the vector $\overrightarrow{\mathbf{c}}$ and the vector $3 \hat{\mathbf{i}}+4 \hat{\mathbf{j}}+\hat{\mathbf{k}}$ is θ, then the greatest integer less than or equal to $\tan ^{2} \theta$ is :

Ans. (38)
Sol. $\overrightarrow{\mathbf{a}}=\hat{\mathbf{i}}+\hat{\mathrm{j}}+\mathrm{k}$

$$
\begin{aligned}
& \overrightarrow{\mathrm{b}}=\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+2 \mathrm{k} \\
& \overrightarrow{\mathrm{c}}=4 \hat{\mathrm{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \mathrm{k} \\
& \overrightarrow{\mathrm{~b}} \times \overrightarrow{\mathrm{a}}=\overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}} \\
& (\overrightarrow{\mathrm{~b}}-\overrightarrow{\mathrm{c}}) \times \overrightarrow{\mathrm{a}}=0
\end{aligned}
$$

$$
\vec{b}-\vec{c}=\lambda \vec{\alpha}
$$

$$
\overrightarrow{\mathrm{b}}=\overrightarrow{\mathrm{c}}+\lambda \vec{\alpha}
$$

$$
-\hat{\mathrm{i}}-8 \hat{\mathrm{j}}+2 \mathrm{k}=\left(4 \hat{\mathrm{i}}+\mathrm{c}_{2} \hat{\mathrm{j}}+\mathrm{c}_{3} \mathrm{k}\right)+\lambda(\hat{\mathrm{i}}+\hat{\mathrm{j}}+\mathrm{k})
$$

$$
\lambda+4=-1 \Rightarrow \lambda=-5
$$

$$
\lambda+\mathrm{c}_{2}=-8 \Rightarrow \mathrm{c}_{2}=-3
$$

$$
\lambda+c_{3}=2 \Rightarrow c_{3}=7
$$

$$
\overrightarrow{\mathbf{c}}=4 \hat{\mathbf{i}}-3 \hat{\mathbf{j}}+7 \mathbf{k}
$$

$$
\cos \theta=\frac{12-12+7}{\sqrt{26} \cdot \sqrt{74}}=\frac{7}{\sqrt{26} \cdot \sqrt{74}}=\frac{7}{2 \sqrt{481}}
$$

$$
\tan ^{2} \theta=\frac{625 \times 3}{49}
$$

$\left[\tan ^{2} \theta\right]=38$
26. The lines $L_{1}, L_{2}, \ldots, \mathrm{I}_{20}$ are distinct. For $\mathrm{n}=1,2,3, \ldots, 10$ all the lines $\mathrm{L}_{2 \mathrm{n}-1}$ are parallel to each other and all the lines $\mathrm{L}_{2 \text { n }}$ pass through a given point P. The maximum number of points of intersection of pairs of lines from the set $\left\{L_{1}, L_{2}, \ldots, L_{20}\right\}$ is equal to :

Ans. (101)

Sol. $\mathrm{L}_{1}, \mathrm{~L}_{3}, \mathrm{~L}_{5},--\mathrm{L}_{19}$ are Parallel
$\mathrm{L}_{2}, \mathrm{~L}_{4}, \mathrm{~L}_{6},--\mathrm{L}_{20}$ are Concurrent
Total points of intersection $={ }^{20} \mathrm{C}_{2}-{ }^{10} \mathrm{C}_{2}-{ }^{10} \mathrm{C}_{2}+1$ $=101$
27. Three points $\mathrm{O}(0,0), \mathrm{P}\left(\mathrm{a}, \mathrm{a}^{2}\right), \mathrm{Q}\left(-\mathrm{b}, \mathrm{b}^{2}\right), \mathrm{a}>0, \mathrm{~b}>0$, are on the parabola $y=x^{2}$. Let S_{1} be the area of the region bounded by the line PQ and the parabola, and S_{2} be the area of the triangle OPQ. If the minimum value of $\frac{\mathrm{S}_{1}}{\mathrm{~S}_{2}}$ is $\frac{\mathrm{m}}{\mathrm{n}}, \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1$, then $\mathrm{m}+\mathrm{n}$ is equal to :

Ans. (7)
Sol.

$S_{2}=1 / 2| | \begin{array}{ccc}0 & 0 & 1 \\ a & a^{2} & 1 \\ -b & b^{2} & 1\end{array}| |=1 / 2\left(a b^{2}+a^{2} b\right)$
PQ:- $y-a^{2}=\frac{a^{2}-b^{2}}{a+b}(x-a)$
$y-a^{2}=(a-b) x-(a-b) a$
$y=(a-b) x+a b$
$S_{1}=\int_{-b}^{a}\left((a-b) x+a b-x^{2}\right) d x$
$=(a-b) \frac{x^{2}}{2}+(a b) x-\left.\frac{x^{3}}{3}\right|_{-b} ^{a}$
$=\frac{(a-b)^{2}(a+b)}{2}+a b(a+b)-\frac{\left(a^{3}+b^{3}\right)}{3}$
$\frac{S_{1}}{S_{2}}=\frac{\frac{(a-b)^{2}}{2}+a b-\frac{\left(a^{2}+b^{2}-a b\right)}{3}}{\frac{\mathrm{ab}}{2}}$
$=\frac{3(a-b)^{2}+6 a b-2\left(a^{2}+b^{2}-a b\right)}{3 a b}$
$=\frac{1}{3}\left[\begin{array}{c}\left.\frac{\mathrm{a}}{\mathrm{b}}+\frac{\mathrm{b}}{\mathrm{a}}+2\right] \\ \text { min }=2\end{array}\right]$
$=\frac{4}{3}=\frac{m}{n} \quad m+n=7$
28. The sum of squares of all possible values of k, for which area of the region bounded by the parabolas $2 y^{2}=k x$ and $k y^{2}=2(y-x)$ is maximum, is equal to :

Ans. (8)

Sol. $\mathrm{ky}^{2}=2(\mathrm{y}-\mathrm{x}) \quad 2 \mathrm{y}^{2}=\mathrm{kx}$

Point of intersection \rightarrow

$$
\begin{aligned}
& k y^{2}=\left(y-\frac{2 y^{2}}{k}\right) \\
& y=0 \quad k y=2\left(1-\frac{2 y}{k}\right) \\
& \mathrm{ky}+\frac{4 \mathrm{y}}{\mathrm{k}}=2 \\
& y=\frac{2}{k+\frac{4}{k}}=\frac{2 k}{k^{2}+4} \\
& A=\int_{0}^{\frac{2 k}{k^{2}+4}}\left(\left(y-\frac{k y^{2}}{2}\right)-\left(\frac{2 y^{2}}{k}\right)\right) \cdot d y \\
& =\frac{\mathrm{y}^{2}}{2}-\left.\left(\frac{\mathrm{k}}{2}+\frac{2}{\mathrm{k}}\right) \cdot \frac{\mathrm{y}^{3}}{3}\right|_{0} ^{\frac{2 \mathrm{k}}{\mathrm{k}^{2}+4}} \\
& =\left(\frac{2 \mathrm{k}}{\mathrm{k}^{2}+4}\right)^{2}\left[\frac{1}{2}-\frac{\mathrm{k}^{2}+4}{2 \mathrm{k}} \times \frac{1}{3} \times \frac{2 \mathrm{k}}{\mathrm{k}^{2}+4}\right] \\
& =\frac{1}{6} \times 4 \times\left(\frac{1}{k+\frac{4}{k}}\right)^{2}
\end{aligned}
$$

$A \cdot M \geq G \cdot M \frac{\left(k+\frac{4}{k}\right)}{2} \geq 2$
$\mathrm{k}+\frac{4}{\mathrm{k}} \geq 4$

Area is maximum when $\mathrm{k}=\frac{4}{\mathrm{k}}$
$\mathrm{k}=2,-2$
29. If $\frac{d x}{d y}=\frac{1+x-y^{2}}{y}, x(1)=1$, then $5 x(2)$ is equal to :

Ans. (5)
Sol. $\frac{d x}{d y}-\frac{x}{y}=\frac{1-y^{2}}{y}$

Integrating factor $=e^{\int-\frac{1}{y} d y}=\frac{1}{y}$
$x \cdot \frac{1}{y}=\int \frac{1-y^{2}}{y^{2}} d y$
$\frac{x}{y}=\frac{-1}{y}-y+c$
$x=-1-y^{2}+c y$
$x(1)=1$
$1=-1-1+\mathrm{c} \Rightarrow \mathrm{c}=3$
$x=-1-y^{2}+3 y$
$5 x(2)=5(-1-4+6)$
$=5$
30. Let ABC be an isosceles triangle in which A is at $(-1,0), \angle \mathrm{A}=\frac{2 \pi}{3}, \mathrm{AB}=\mathrm{AC}$ and B is on the positive x-axis. If $B C=4 \sqrt{3}$ and the line $B C$ intersects the line $y=x+3$ at (α, β), then $\frac{\beta^{4}}{\alpha^{2}}$ is :

Ans. (36)
Sol.

$$
\begin{aligned}
& \left.\frac{c}{\sin 30^{\circ}}=\frac{4 \sqrt{3}}{\sin 120^{\circ}} \text { [By sine rule }\right] \\
& 2 c=8 \Rightarrow c=4
\end{aligned}
$$

$$
\begin{gathered}
\mathrm{AB}=|(\mathrm{b}+1)|=4 \\
\mathrm{~b}=3, \mathrm{~m}_{\mathrm{AB}}=0 \\
\mathrm{~m}_{\mathrm{BC}}=\frac{-1}{\sqrt{3}} \\
\mathrm{BC}:-\mathrm{y}=\frac{-1}{\sqrt{3}}(\mathrm{x}-3) \\
\sqrt{3} \mathrm{y}+\mathrm{x}=3
\end{gathered}
$$

Point of intersection: $\mathrm{y}=\mathrm{x}+3, \sqrt{3} \mathrm{y}+\mathrm{x}=3$

$$
\begin{aligned}
& (\sqrt{3+1}) y=6 \\
& y=\frac{6}{\sqrt{3}+1} \\
& x=\frac{6}{\sqrt{3}+1}-3 \\
& =\frac{6-3 \sqrt{3}-3}{\sqrt{3}+1} \\
& =3 \frac{(1-\sqrt{3})}{(1+\sqrt{3})}=\frac{-6}{(1+\sqrt{3})^{2}}
\end{aligned}
$$

$$
\frac{\beta^{4}}{\alpha^{2}}=36
$$

