FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Monday 29th January, 2024)
TIME : 3: 00 PM to 6: 00 PM

MATHEMATICS

SECTION-A

1. Let $\mathrm{A}=\left[\begin{array}{ccc}2 & 1 & 2 \\ 6 & 2 & 11 \\ 3 & 3 & 2\end{array}\right]$ and $\mathrm{P}=\left[\begin{array}{lll}1 & 2 & 0 \\ 5 & 0 & 2 \\ 7 & 1 & 5\end{array}\right]$. The sum of the prime factors of $\left|\mathrm{P}^{-1} \mathrm{AP}-2 I\right|$ is equal to
(1) 26
(2) 27
(3) 66
(4) 23

Ans. (1)
Sol. $\quad\left|P^{-1} A P-2 I\right|=\left|P^{-1} A P-2 P^{-1} P\right|$

$$
\begin{aligned}
& =\left|\mathrm{P}^{-1}(\mathrm{~A}-2 \mathrm{I}) \mathrm{P}\right| \\
& =\left|\mathrm{P}^{-1}\right||\mathrm{A}-2 \mathrm{I}||\mathrm{P}| \\
& =|\mathrm{A}-2 \mathrm{I}| \\
& =\left|\begin{array}{ccc}
0 & 1 & 2 \\
6 & 0 & 11 \\
3 & 3 & 0
\end{array}\right|=69
\end{aligned}
$$

So, Prime factor of 69 is $3 \& 23$
So, sum $=26$
2. Number of ways of arranging 8 identical books into 4 identical shelves where any number of shelves may remain empty is equal to
(1) 18
(2) 16
(3) 12
(4) 15

Ans. (4)
Sol. 3 Shelf empty : $(8,0,0,0) \rightarrow 1$ way
2 shelf empty : $\left.\begin{array}{l}\left(\begin{array}{l}(7,1,0,0) \\ (6,2,0,0) \\ (5,3,0,0) \\ (4,4,0,0)\end{array}\right] \rightarrow \text { 4ways } \\ \left.\begin{array}{ll}(6,1,1,0) & (3,3,2,0) \\ 1 \text { shelf empty : } & (5,2,1,0) \\ (4,2,2,0)\end{array}\right] \rightarrow 5 \text { ways } \\ (4,3,1,0) \\ (1,2,3,2) \\ (5,1,1,1) \\ (2,2,2,2) \\ (3,3,1,1) \\ (4,2,1,1)\end{array}\right] \rightarrow 5$ ways

Total $=15$ ways

TEST PAPER WITH SOLUTION

3. Let $\mathrm{P}(3,2,3), \mathrm{Q}(4,6,2)$ and $\mathrm{R}(7,3,2)$ be the vertices of $\triangle \mathrm{PQR}$. Then, the angle $\angle \mathrm{QPR}$ is
(1) $\frac{\pi}{6}$
(2) $\cos ^{-1}\left(\frac{7}{18}\right)$
(3) $\cos ^{-1}\left(\frac{1}{18}\right)$
(4) $\frac{\pi}{3}$

Ans. (4)
Sol.
$\mathrm{P}(3,2,3)$
$\mathrm{Q}(4,6,2)$

Direction ratio of $\mathrm{PR}=(4,1,-1)$
Direction ratio of $\mathrm{PQ}=(1,4,-1)$
Now, $\cos \theta=\left|\frac{4+4+1}{\sqrt{18} \cdot \sqrt{18}}\right|$
$\theta=\frac{\pi}{3}$
4. If the mean and variance of five observations are $\frac{24}{5}$ and $\frac{194}{25}$ respectively and the mean of first four observations is $\frac{7}{2}$, then the variance of the first four observations in equal to
(1) $\frac{4}{5}$
(2) $\frac{77}{12}$
(3) $\frac{5}{4}$
(4) $\frac{105}{4}$

Ans. (3)
Sol. $\overline{\mathrm{X}}=\frac{24}{5} ; \sigma^{2}=\frac{194}{25}$
Let first four observation be $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$
Here, $\frac{x_{1}+x_{2}+x_{3}+x_{4}+x_{5}}{5}=\frac{24}{5} \ldots .$. .(1)
Also, $\frac{\mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}}{4}=\frac{7}{2}$
$\Rightarrow \mathrm{x}_{1}+\mathrm{x}_{2}+\mathrm{x}_{3}+\mathrm{x}_{4}=14$

Now from eqn - 1
$\mathrm{X}_{5}=10$
Now, $\sigma^{2}=\frac{194}{25}$
$\frac{\mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}+\mathrm{x}_{4}^{2}+\mathrm{x}_{5}^{2}}{5}-\frac{576}{25}=\frac{194}{25}$
$\Rightarrow \mathrm{x}_{1}^{2}+\mathrm{x}_{2}^{2}+\mathrm{x}_{3}^{2}+\mathrm{x}_{4}^{2}=54$
Now, variance of first 4 observations

$$
\begin{aligned}
\operatorname{Var} & =\frac{\sum_{\mathrm{i}=1}^{4} \mathrm{x}_{\mathrm{i}}^{2}}{4}-\left(\frac{\sum_{\mathrm{i}=1}^{4} \mathrm{x}_{\mathrm{i}}}{4}\right)^{2} \\
& =\frac{54}{4}-\frac{49}{4}=\frac{5}{4}
\end{aligned}
$$

5. The function $f(x)=2 x+3(x)^{\frac{2}{3}}, x \in \mathbb{R}$, has
(1) exactly one point of local minima and no point of local maxima
(2) exactly one point of local maxima and no point of local minima
(3) exactly one point of local maxima and exactly one point of local minima
(4) exactly two points of local maxima and exactly one point of local minima
Ans. (3)
Sol. $\mathrm{f}(\mathrm{x})=2 \mathrm{x}+3(\mathrm{x})^{\frac{2}{3}}$
$f^{\prime}(x)=2+2 x^{\frac{-1}{3}}$
$=2\left(1+\frac{1}{\mathrm{x}^{\frac{1}{3}}}\right)$
$=2\left(\frac{x^{\frac{1}{3}}+1}{x^{\frac{1}{3}}}\right)$

So, maxima (M) at $x=-1 \& \operatorname{minima}(m)$ at $x=0$
6. Let r and θ respectively be the modulus and amplitude of the complex number $z=2-i\left(2 \tan \frac{5 \pi}{8}\right)$, then (r, θ) is equal to
(1) $\left(2 \sec \frac{3 \pi}{8}, \frac{3 \pi}{8}\right)$
(2) $\left(2 \sec \frac{3 \pi}{8}, \frac{5 \pi}{8}\right)$
(3) $\left(2 \sec \frac{5 \pi}{8}, \frac{3 \pi}{8}\right)$
(4) $\left(2 \sec \frac{11 \pi}{8}, \frac{11 \pi}{8}\right)$

Ans. (1)
Sol. $z=2-i\left(2 \tan \frac{5 \pi}{8}\right)=x+i y$ (let)
$r=\sqrt{x^{2}+y^{2}} \& \theta=\tan ^{-1} \frac{y}{x}$
$r=\sqrt{(2)^{2}+\left(2 \tan \frac{5 \pi}{8}\right)^{2}}$
$=\left|2 \sec \frac{5 \pi}{8}\right|=\left|2 \sec \left(\pi-\frac{3 \pi}{8}\right)\right|$
$=2 \sec \frac{3 \pi}{8}$
$\& \quad \theta=\tan ^{-1}\left(\frac{-2 \tan \frac{5 \pi}{8}}{2}\right)$
$=\tan ^{-1}\left(\tan \left(\pi-\frac{5 \pi}{8}\right)\right)$
$=\frac{3 \pi}{8}$
7. The sum of the solutions $x \in \mathbb{R}$ of the equation $\frac{3 \cos 2 x+\cos ^{3} 2 x}{\cos ^{6} x-\sin ^{6} x}=x^{3}-x^{2}+6$ is
(1) 0
(2) 1
(3) -1
(4) 3

Ans. (3)
Sol. $\frac{3 \cos 2 x+\cos ^{3} 2 x}{\cos ^{6} x-\sin ^{6} x}=x^{3}-x^{2}+6$
$\Rightarrow \frac{\cos 2 x\left(3+\cos ^{2} 2 x\right)}{\cos 2 x\left(1-\sin ^{2} x \cos ^{2} x\right)}=x^{3}-x^{2}+6$
$\Rightarrow \frac{4\left(3+\cos ^{2} 2 x\right)}{\left(4-\sin ^{2} 2 x\right)}=x^{3}-x^{2}+6$
$\Rightarrow \frac{4\left(3+\cos ^{2} 2 x\right)}{\left(3+\cos ^{2} 2 x\right)}=x^{3}-x^{2}+6$
$x^{3}-x^{2}+2=0 \Rightarrow(x+1)\left(x^{2}-2 x+2\right)=0$
so, sum of real solutions $=-1$
8. Let $\overrightarrow{\mathrm{OA}}=\overrightarrow{\mathrm{a}}, \overrightarrow{\mathrm{OB}}=12 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{~b}}$ and $\overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{b}}$, where O is the origin. If S is the parallelogram with adjacent sides OA and OC, then $\frac{\text { area of the quadrilateral } \mathrm{OABC}}{\text { area of } \mathrm{S}}$ is equal to \qquad
(1) 6
(2) 10
(3) 7
(4) 8

Ans. (4)

Sol.

Area of parallelogram, $S=|\vec{a} \times \vec{b}|$
Area of quadrilateral $=\operatorname{Area}(\triangle \mathrm{OAB})+\operatorname{Area}(\triangle \mathrm{OBC})$
$=\frac{1}{2}\{|\overrightarrow{\mathrm{a}} \times(12 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{~b}})|+|\overrightarrow{\mathrm{b}} \times(12 \overrightarrow{\mathrm{a}}+4 \overrightarrow{\mathrm{~b}})|\}$
$=8|(\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}})|$
Ratio $=\frac{8|(\vec{a} \times \vec{b})|}{|(\vec{a} \times \vec{b})|}=8$
9. If $\log _{e} a, \log _{e} b, \log _{e} c$ are in an A.P. and $\log _{e} a$ $\log _{e} 2 b, \log _{e} 2 b-\log _{e} 3 c, \log _{e} 3 c-\log _{e} a$ are also in an A.P, then $\mathrm{a}: \mathrm{b}: \mathrm{c}$ is equal to
(1) $9: 6: 4$
(2) $16: 4: 1$
(3) $25: 10: 4$
(4) $6: 3: 2$

Ans. (1)
Sol. $\log _{\mathrm{e}} \mathrm{a}, \log _{\mathrm{e}} \mathrm{b}, \log _{\mathrm{e}} \mathrm{c}$ are in A.P.
$\therefore \mathrm{b}^{2}=\mathrm{ac} \quad \ldots$.(i)
Also
$\log _{e}\left(\frac{a}{2 b}\right), \log _{e}\left(\frac{2 b}{3 c}\right), \log _{e}\left(\frac{3 c}{a}\right)$ are in A.P.
$\left(\frac{2 \mathrm{~b}}{3 \mathrm{c}}\right)^{2}=\frac{\mathrm{a}}{2 \mathrm{~b}} \times \frac{3 \mathrm{c}}{\mathrm{a}}$
$\frac{\mathrm{b}}{\mathrm{c}}=\frac{3}{2}$
Putting in eq. (i) $b^{2}=a \times \frac{2 b}{3}$
$\frac{\mathrm{a}}{\mathrm{b}}=\frac{3}{2}$
$\mathrm{a}: \mathrm{b}: \mathrm{c}=9: 6: 4$
10. If
$\int \frac{\sin ^{\frac{2}{2}} x+\cos ^{\frac{3}{2}} x}{\sqrt{\sin ^{3} x \cos ^{3} x \sin (x-\theta)}} d x=A \sqrt{\cos \theta \tan x-\sin \theta}+B \sqrt{\cos \theta-\sin \theta \cot x}+C$,
where C is the integration constant, then $A B$ is equal to
(1) $4 \operatorname{cosec}(2 \theta)$
(2) $4 \sec \theta$
(3) $2 \sec \theta$
(4) $8 \operatorname{cosec}(2 \theta)$

Ans. (4)
Sol. $\int \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sqrt{\sin ^{3} x \cos ^{3} x \sin (x-\theta)}} d x$
$I=\int \frac{\sin ^{\frac{3}{2}} x+\cos ^{\frac{3}{2}} x}{\sqrt{\sin ^{3} x \cos ^{3} x(\sin x \cos \theta-\cos x \sin \theta)}} d x$
$=$

$\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2} \quad$..... $\{$ Let $\}$
For I_{1}, let $\tan \mathrm{x} \cos \theta-\sin \theta=\mathrm{t}^{2}$

$$
\sec ^{2} x d x=\frac{2 t d t}{\cos \theta}
$$

For I_{2}, let $\cos \theta-\cot x \sin \theta=z^{2}$

$$
\operatorname{cosec}^{2} x d x=\frac{2 z d z}{\sin \theta}
$$

$$
\mathrm{I}=\mathrm{I}_{1}+\mathrm{I}_{2}
$$

$$
=\int \frac{2 \mathrm{tdt}}{\cos \theta \mathrm{t}}+\int \frac{2 \mathrm{zdz}}{\sin \theta \mathrm{z}}
$$

$$
=\frac{2 \mathrm{t}}{\cos \theta}+\frac{2 \mathrm{z}}{\sin \theta}
$$

$=2 \sec \theta \sqrt{\tan x \cos \theta-\sin \theta}+2 \operatorname{cosec} \theta \sqrt{\cos \theta-\cot x \sin \theta}$
Comparing

$$
\mathrm{AB}=8 \operatorname{cosec} 2 \theta
$$

11. The distance of the point $(2,3)$ from the line $2 x-$ $3 y+28=0$, measured parallel to the line $\sqrt{3} x-y+1=0$, is equal to
(1) $4 \sqrt{2}$
(2) $6 \sqrt{3}$
(3) $3+4 \sqrt{2}$
(4) $4+6 \sqrt{3}$

Ans. (4)
Sol.

Writing P in terms of parametric co-ordinates $2+\mathrm{r}$ $\cos \theta, 3+r \sin \theta$ as $\tan \theta=\sqrt{3}$
$\mathrm{P}\left(2+\frac{\mathrm{r}}{2}, 3+\frac{\sqrt{3} \mathrm{r}}{2}\right)$
P must satisfy $2 \mathrm{x}-3 \mathrm{y}+28=0$
So, $2\left(2+\frac{r}{2}\right)-3\left(3+\frac{\sqrt{3} r}{2}\right)+28=0$
We find $r=4+6 \sqrt{3}$
12. If $\sin \left(\frac{y}{x}\right)=\log _{e}|x|+\frac{\alpha}{2}$ is the solution of the differential equation $x \cos \left(\frac{y}{x}\right) \frac{d y}{d x}=y \cos \left(\frac{y}{x}\right)+x$ and $y(1)=\frac{\pi}{3}$, then α^{2} is equal to
(1) 3
(2) 12
(3) 4
(4) 9

Ans. (1)
Sol. Differential equation :-

$$
\begin{aligned}
& x \cos \frac{y}{x} \frac{d y}{d x}=y \cos \frac{y}{x}+x \\
& \cos \frac{y}{x}\left[x \frac{d y}{d x}-y\right]=x
\end{aligned}
$$

Divide both sides by x^{2}

$$
\cos \frac{y}{x}\left(\frac{x \frac{d y}{d x}-y}{x^{2}}\right)=\frac{1}{x}
$$

Let $\frac{y}{x}=t$

$$
\cos \mathrm{t}\left(\frac{\mathrm{dt}}{\mathrm{dx}}\right)=\frac{1}{\mathrm{x}}
$$

$$
\cos \mathrm{t} d t=\frac{1}{\mathrm{x}} \mathrm{dx}
$$

Integrating both sides

$$
\begin{aligned}
& \sin t=\ln |x|+c \\
& \sin \frac{y}{x}=\ln |x|+c
\end{aligned}
$$

$\operatorname{Using} \mathrm{y}(1)=\frac{\pi}{3}$, we get $\mathrm{c}=\frac{\sqrt{3}}{2}$
So, $\alpha=\sqrt{3} \Rightarrow \alpha^{2}=3$
13. If each term of a geometric progression $a_{1}, a_{2}, a_{3}, \ldots$ with $\mathrm{a}_{1}=\frac{1}{8}$ and $\mathrm{a}_{2} \neq \mathrm{a}_{1}$, is the arithmetic mean of the next two terms and $S_{n}=a_{1}+a_{2}+\ldots+a_{n}$, then $\mathrm{S}_{20}-\mathrm{S}_{18}$ is equal to
(1) 2^{15}
(2) -2^{18}
(3) 2^{18}
(4) -2^{15}

Ans. (4)
Sol. Let r^{\prime} th term of the GP be $\mathrm{ar}^{\mathrm{n}-1}$. Given,

$$
\begin{aligned}
& 2 a_{r}=a_{r+1}+a_{r+2} \\
& 2{a r^{n-1}}^{n}=\operatorname{ar}^{n}+\operatorname{ar}^{n+1} \\
& \frac{2}{r}=1+r \\
& r^{2}+r-2=0
\end{aligned}
$$

Hence, we get, $r=-2($ as $r \neq 1)$
So, $\mathrm{S}_{20}-\mathrm{S}_{18}=$ (Sum upto 20 terms) - (Sum upto 18 terms) $=\mathrm{T}_{19}+\mathrm{T}_{20}$

$$
\mathrm{T}_{19}+\mathrm{T}_{20}=\mathrm{ar}^{18}(1+\mathrm{r})
$$

Putting the values $\mathrm{a}=\frac{1}{8}$ and $\mathrm{r}=-2$;
we get $\mathrm{T}_{19}+\mathrm{T}_{20}=-2^{15}$
14. Let A be the point of intersection of the lines $3 x+$ $2 y=14,5 x-y=6$ and B be the point of intersection of the lines $4 x+3 y=8,6 x+y=5$. The distance of the point $\mathrm{P}(5,-2)$ from the line $A B$ is
(1) $\frac{13}{2}$
(2) 8
(3) $\frac{5}{2}$
(4) 6

Ans. (4)

OVERSEAS

Sol. \quad Solving lines $L_{1}(3 x+2 y=14)$ and $L_{2}(5 x-y=6)$ to get $A(2,4)$ and solving lines $L_{3}(4 x+3 y=8)$ and $\mathrm{L}_{4}(6 \mathrm{x}+\mathrm{y}=5)$ to get $\mathrm{B}\left(\frac{1}{2}, 2\right)$.
Finding Eqn. of $\mathrm{AB}: 4 \mathrm{x}-3 \mathrm{y}+4=0$
Calculate distance PM
$\Rightarrow\left|\frac{4(5)-3(-2)+4}{5}\right|=6$
15. Let $x=\frac{m}{n}$ (m, n are co-prime natural numbers) be a solution of the equation $\cos \left(2 \sin ^{-1} x\right)=\frac{1}{9}$ and let $\alpha, \beta(\alpha>\beta)$ be the roots of the equation $\mathrm{mx}^{2}-\mathrm{nx}-$ $\mathrm{m}+\mathrm{n}=0$. Then the point (α, β) lies on the line
(1) $3 x+2 y=2$
(2) $5 x-8 y=-9$
(3) $3 x-2 y=-2$
(4) $5 x+8 y=9$

Ans. (4)
Sol. Assume $\sin ^{-1} x=\theta$

$$
\begin{aligned}
& \cos (2 \theta)=\frac{1}{9} \\
& \sin \theta= \pm \frac{2}{3}
\end{aligned}
$$

as m and n are co-prime natural numbers,

$$
x=\frac{2}{3}
$$

i.e. $m=2, n=3$

So, the quadratic equation becomes $2 \mathrm{x}^{2}-3 \mathrm{x}+1=$ 0 whose roots are $\alpha=1, \beta=\frac{1}{2}$
$\left(1, \frac{1}{2}\right)$ lies on $5 x+8 y=9$
16. The function $f(x)=\frac{x}{x^{2}-6 x-16}, x \in \mathbb{R}-\{-2,8\}$
(1) decreases in $(-2,8)$ and increases in

$$
(-\infty,-2) \cup(8, \infty)
$$

(2) decreases in $(-\infty,-2) \cup(-2,8) \cup(8, \infty)$
(3) decreases in $(-\infty,-2)$ and increases in $(8, \infty)$
(4) increases in $(-\infty,-2) \cup(-2,8) \cup(8, \infty)$

Ans. (2)

Sol. $f(x)=\frac{x}{x^{2}-6 x-16}$
Now,
$f^{\prime}(x)=\frac{-\left(x^{2}+16\right)}{\left(x^{2}-6 x-16\right)^{2}}$
$\mathrm{f}^{\prime}(\mathrm{x})<0$
Thus $f(x)$ is decreasing in
$(-\infty,-2) \cup(-2,8) \cup(8, \infty)$
17. Let $\mathrm{y}=\log _{\mathrm{e}}\left(\frac{1-\mathrm{x}^{2}}{1+\mathrm{x}^{2}}\right),-1<\mathrm{x}<1$. Then at $\mathrm{x}=\frac{1}{2}$,
the value of $225\left(y^{\prime}-y^{\prime \prime}\right)$ is equal to
(1) 732
(2) 746
(3) 742
(4) 736

Ans. (4)
Sol. $y=\log _{e}\left(\frac{1-x^{2}}{1+x^{2}}\right)$
$\frac{d y}{d x}=y^{\prime}=\frac{-4 x}{1-x^{4}}$
Again,
$\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=\frac{-4\left(1+3 x^{4}\right)}{\left(1-x^{4}\right)^{2}}$
Again
$y^{\prime}-y^{\prime \prime}=\frac{-4 x}{1-x^{4}}+\frac{4\left(1+3 x^{4}\right)}{\left(1-x^{4}\right)^{2}}$
at $\mathrm{x}=\frac{1}{2}$,
$y^{\prime}-y^{\prime \prime}=\frac{736}{225}$
Thus $225\left(y^{\prime}-y^{\prime \prime}\right)=225 \times \frac{736}{225}=736$
18. If R is the smallest equivalence relation on the set $\{1,2,3,4\}$ such that $\{(1,2),(1,3)\} \subset R$, then the number of elements in R is \qquad
(1) 10
(2) 12
(3) 8
(4) 15

Ans. (1)
Sol. Given set $\{1,2,3,4\}$
Minimum order pairs are
$(1,1),(2,2),(3,3),(4,4),(3,1),(2,1),(2,3),(3,2)$, $(1,3),(1,2)$

Thus no. of elements $=10$
19. An integer is chosen at random from the integers 1 , $2,3, \ldots, 50$. The probability that the chosen integer is a multiple of atleast one of 4,6 and 7 is
(1) $\frac{8}{25}$
(2) $\frac{21}{50}$
(3) $\frac{9}{50}$
(4) $\frac{14}{25}$

Ans. (2)
Sol. Given set $=\{1,2,3, \ldots \ldots . .50\}$
$P(A)=$ Probability that number is multiple of 4
$P(B)=$ Probability that number is multiple of 6
$P(C)=$ Probability that number is multiple of 7 Now,
$\mathrm{P}(\mathrm{A})=\frac{12}{50}, \mathrm{P}(\mathrm{B})=\frac{8}{50}, \mathrm{P}(\mathrm{C})=\frac{7}{50}$
again
$\mathrm{P}(\mathrm{A} \cap \mathrm{B})=\frac{4}{50}, \mathrm{P}(\mathrm{B} \cap \mathrm{C})=\frac{1}{50}, \mathrm{P}(\mathrm{A} \cap \mathrm{C})=\frac{1}{50}$
$\mathrm{P}(\mathrm{A} \cap \mathrm{B} \cap \mathrm{C})=0$
Thus

$$
\begin{aligned}
& \mathrm{P}(\mathrm{~A} \\
& \sim \mathrm{B} \cup \mathrm{C})=\frac{12}{50}+\frac{8}{50}+\frac{7}{50}-\frac{4}{50}-\frac{1}{50}-\frac{1}{50}+0 \\
& \quad=\frac{21}{50}
\end{aligned}
$$

20. Let a unit vector $\hat{\mathrm{u}}=\mathrm{x} \hat{\mathrm{i}}+\mathrm{y} \hat{\mathrm{j}}+\mathrm{z} \hat{\mathrm{k}}$ make angles $\frac{\pi}{2}, \frac{\pi}{3}$ and $\frac{2 \pi}{3}$ with the vectors $\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}, \frac{1}{\sqrt{2}} \hat{\mathrm{j}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$ and

$$
\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}} \quad \text { respectively }
$$ $\overrightarrow{\mathrm{v}}=\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$, then $|\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}|^{2}$ is equal to

(1) $\frac{11}{2}$
(2) $\frac{5}{2}$
(3) 9
(4) 7

Ans. (2)
Sol. Unit vector $\hat{\mathbf{u}}=x \hat{i}+y \hat{j}+z \hat{k}$ $\overrightarrow{\mathrm{p}}_{1}=\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}, \overrightarrow{\mathrm{p}}_{2}=\frac{1}{\sqrt{2}} \hat{\mathrm{j}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$
$\overrightarrow{\mathrm{p}}_{3}=\frac{1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{j}}$
Now angle between $\hat{\mathrm{u}}$ and $\overrightarrow{\mathrm{p}}_{1}=\frac{\pi}{2}$
$\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_{1}=0 \Rightarrow \frac{\mathrm{x}}{\sqrt{2}}+\frac{\mathrm{z}}{\sqrt{2}}=0$
$\Rightarrow \mathrm{x}+\mathrm{z}=0 \quad \ldots$.(i)
Angle between $\hat{\mathrm{u}}$ and $\overrightarrow{\mathrm{p}}_{2}=\frac{\pi}{3}$
$\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_{2}=|\hat{\mathrm{u}}| \cdot\left|\overrightarrow{\mathrm{p}}_{2}\right| \cos \frac{\pi}{3}$
$\Rightarrow \frac{\mathrm{y}}{\sqrt{2}}+\frac{\mathrm{z}}{\sqrt{2}}=\frac{1}{2} \Rightarrow \mathrm{y}+\mathrm{z}=\frac{1}{\sqrt{2}}$
Angle between $\hat{\mathrm{u}}$ and $\overrightarrow{\mathrm{p}}_{3}=\frac{2 \pi}{3}$
$\hat{\mathrm{u}} \cdot \overrightarrow{\mathrm{p}}_{3}=|\hat{\mathrm{u}}| \cdot\left|\overrightarrow{\mathrm{p}}_{3}\right| \cos \frac{2 \pi}{3}$
$\Rightarrow \frac{x}{\sqrt{2}}+\frac{4}{\sqrt{2}}=\frac{-1}{2} \Rightarrow x+y=\frac{-1}{\sqrt{2}}$
from equation (i), (ii) and (iii) we get
$x=\frac{-1}{\sqrt{2}} \quad y=0 \quad z=\frac{1}{\sqrt{2}}$
Thus $\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}=\frac{-1}{\sqrt{2}} \hat{\mathrm{i}}+\frac{1}{\sqrt{2}} \hat{\mathrm{k}}-\frac{1}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}-\frac{1}{\sqrt{2}} \hat{\mathrm{k}}$
$\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}=\frac{-2}{\sqrt{2}} \hat{\mathrm{i}}-\frac{1}{\sqrt{2}} \hat{\mathrm{j}}$
$\therefore|\hat{\mathrm{u}}-\overrightarrow{\mathrm{v}}|^{2}=\left(\sqrt{\frac{4}{2}+\frac{1}{2}}\right)^{2}=\frac{5}{2}$

SECTION-B

21. Let α, β be the roots of the equation $x^{2}-\sqrt{6} x+3=0$ such that $\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$. Let a, b be integers not divisible by 3 and n be a natural number such that $\frac{\alpha^{99}}{\beta}+\alpha^{98}=3^{n}(a+i b), i=\sqrt{-1}$. Then $\mathrm{n}+\mathrm{a}+\mathrm{b}$ is equal to \qquad .

Ans. 49

OVERSEAS

Sol. $\quad x^{2}-\sqrt{6} x+6=0_{\searrow \beta}^{\nearrow \alpha}$
$x=\frac{\sqrt{6} \pm i \sqrt{6}}{2}=\frac{\sqrt{6}}{2}(1 \pm i)$
$\alpha=\sqrt{3}\left(\mathrm{e}^{\mathrm{i} \frac{\pi}{4}}\right), \beta=\sqrt{3}\left(\mathrm{e}^{-\mathrm{i} \frac{\pi}{4}}\right)$
$\therefore \frac{\alpha^{99}}{\beta}+\alpha^{98}=\alpha^{98}\left(\frac{\alpha}{\beta}+1\right)$
$=\frac{\alpha^{98}(\alpha+\beta)}{\beta}=3^{49}\left(e^{\mathrm{i} 99 \frac{\pi}{4}}\right) \times \sqrt{2}$
$=3^{49}(-1+\mathrm{i})$
$=3^{\mathrm{n}}(\mathrm{a}+\mathrm{ib})$
$\therefore \mathrm{n}=49, \mathrm{a}=-1, \mathrm{~b}=1$
$\therefore \mathrm{n}+\mathrm{a}+\mathrm{b}=49-1+1=49$
22. Let for any three distinct consecutive terms a, b, c of an A.P, the lines $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ be concurrent at the point P and $\mathrm{Q}(\alpha, \beta)$ be a point such that the system of equations
$x+y+z=6$,
$2 x+5 y+\alpha z=\beta$ and
$x+2 y+3 z=4$, has infinitely many solutions. Then $(P Q)^{2}$ is equal to \qquad .
Ans. 113
Sol. $\because a, b, c$ and in A.P
$\Rightarrow 2 \mathrm{~b}=\mathrm{a}+\mathrm{c} \Rightarrow \mathrm{a}-2 \mathrm{~b}+\mathrm{c}=0$
$\therefore \mathrm{ax}+\mathrm{by}+\mathrm{c}$ passes through fixed point $(1,-2)$
$\therefore \mathrm{P}=(1,-2)$
For infinite solution,
$\mathrm{D}=\mathrm{D}_{1}=\mathrm{D}_{2}=\mathrm{D}_{3}=0$
$\mathrm{D}:\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & 5 & \alpha \\ 1 & 2 & 3\end{array}\right|=0$
$\Rightarrow \alpha=8$
$D_{1}:\left|\begin{array}{lll}6 & 1 & 1 \\ \beta & 5 & \alpha \\ 4 & 2 & 3\end{array}\right|=0 \Rightarrow \beta=6$
$\therefore \mathrm{Q}=(8,6)$
$\therefore \mathrm{PQ}^{2}=113$
23. Let $\mathrm{P}(\alpha, \beta)$ be a point on the parabola $\mathrm{y}^{2}=4 \mathrm{x}$. If P also lies on the chord of the parabola $x^{2}=8 y$ whose mid point is $\left(1, \frac{5}{4}\right)$. Then $(\alpha-28)(\beta-8)$ is equal to \qquad .
Ans. 192
Sol. Parabola is $\mathrm{x}^{2}=8 \mathrm{y}$
Chord with mid point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ is $\mathrm{T}=\mathrm{S}_{1}$
$\therefore \mathrm{xx}_{1}-4\left(\mathrm{y}+\mathrm{y}_{1}\right)=\mathrm{x}_{1}{ }^{2}-8 \mathrm{y}_{1}$
$\therefore\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)=\left(1, \frac{5}{4}\right)$
$\Rightarrow x-4\left(y+\frac{5}{4}\right)=1-8 \times \frac{5}{4}=-9$
$\therefore x-4 y+4=0$
(α, β) lies on (i) \& also on $y^{2}=4 x$
$\therefore \alpha-4 \beta+4=0 \ldots$
$\& \beta^{2}=4 \alpha \ldots$.... (iii)
Solving (ii) \& (iii)
$\beta^{2}=4(4 \beta-4) \Rightarrow \beta^{2}-16 \beta+16=0$
$\therefore \beta=8 \pm 4 \sqrt{3}$ and $\alpha=4 \beta-4=28 \pm 16 \sqrt{3}$

$$
\begin{aligned}
& \therefore(\alpha, \quad \beta)=(28+16 \sqrt{3}, 8+4 \sqrt{3}) \\
& (28-16 \sqrt{3}, 8-4 \sqrt{3}) \\
& \therefore(\alpha-28)(\beta-8)=(\pm 16 \sqrt{3})(\pm 4 \sqrt{3}) \\
& =192
\end{aligned}
$$

\&
24. If $\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 x} d x=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$, where α, β and γ are rational numbers, then $3 \alpha+4 \beta-\gamma$ is equal to \qquad .
Ans. 6
Sol. $=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}} \sqrt{1-\sin 2 \mathrm{x}} \mathrm{dx}$
$=\int_{\frac{\pi}{6}}^{\frac{\pi}{3}}|\sin x-\cos x| d x$
$=\int_{\frac{\pi}{6}}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{3}}(\sin x-\cos x) d x$
$=-1+2 \sqrt{2}-\sqrt{3}$
$=\alpha+\beta \sqrt{2}+\gamma \sqrt{3}$
$\alpha=-1, \beta=2, \gamma=-1$
$3 \alpha+4 \beta-\gamma=6$
25. Let the area of the region $\{(x, y): 0 \leq x \leq 3,0 \leq y \leq$ $\left.\min \left\{\mathrm{x}^{2}+2,2 \mathrm{x}+2\right\}\right\}$ be A . Then 12 A is equal to
\qquad .
Ans. 164

Sol.

$y=2 x+2$
$A=\int_{0}^{2}\left(x^{2}+2\right) d x+\int_{2}^{3}(2 x+2) d x$
$A=\frac{41}{3}$
$12 \mathrm{~A}=41 \times 4=164$
26. Let O be the origin, and M and N be the points on the lines $\frac{x-5}{4}=\frac{y-4}{1}=\frac{z-5}{3}$ and
$\frac{\mathrm{x}+8}{12}=\frac{\mathrm{y}+2}{5}=\frac{\mathrm{z}+11}{9}$ respectively such that MN is the shortest distance between the given lines. Then $\overrightarrow{\mathrm{OM}} \cdot \overrightarrow{\mathrm{ON}}$ is equal to \qquad .

Ans. 9
Sol. $\mathrm{L}_{1}: \frac{\mathrm{x}-5}{4}=\frac{\mathrm{y}-4}{1}=\frac{\mathrm{z}-5}{3}=\lambda \quad \operatorname{drs}(4,1,3)=\mathrm{b}_{1}$
$\mathrm{M}(4 \lambda+5, \lambda+4,3 \lambda+5)$
$L_{2}: \frac{x+8}{12}=\frac{y+2}{5}=\frac{z+11}{9}=\mu$
$\mathrm{N}(12 \mu-8,5 \mu-2,9 \mu-11)$
$\overrightarrow{\mathrm{MN}}=(4 \lambda-12 \mu+13, \lambda-5 \mu+6,3 \lambda-9 \mu+16) . .(1)$

Now
$\overrightarrow{\mathrm{b}}_{1} \times \overrightarrow{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 4 & 1 & 3 \\ 12 & 5 & 9\end{array}\right|=-6 \hat{\mathrm{i}}+8 \hat{\mathrm{k}}$
Equation (1) and (2)
$\therefore \frac{4 \lambda-12 \mu+13}{-6}=\frac{\lambda-5 \mu+6}{0}=\frac{3 \lambda-9 \mu+16}{8}$
I and II
$\lambda-5 \mu+6=0$
I and III
$\lambda-3 \mu+4=0$
Solve (3) and (4) we get
$\lambda=-1, \mu=1$
$\therefore \mathrm{M}(1,3,2)$
$\mathrm{N}(4,3,-2)$
$\therefore \overrightarrow{\mathrm{OM}} \cdot \overrightarrow{\mathrm{ON}}=4+9-4=9$
27. Let

differentiable in $(-\infty, 0) \cup(0, \infty)$ and $f(1)=1$. Then the value of ea, such that $f(a)=0$, is equal to
\qquad -

Ans. 2
Sol. $f(1)=1, f(a)=0$
$f^{2}(x)=\operatorname{Lim}_{r \rightarrow x}\left(\frac{2 r^{2}\left(f^{2}(r)-f(x) f(r)\right)}{r^{2}-x^{2}}-r^{3} e^{\frac{f(r)}{r}}\right)$
$=\operatorname{Lim}_{r \rightarrow x}\left(\frac{2 r^{2} f(r)}{r+x} \frac{(f(r)-f(x))}{r-x}-r^{3} e^{\frac{f(r)}{r}}\right)$
$f^{2}(x)=\frac{2 x^{2} f(x)}{2 x} f^{\prime}(x)-x^{3} e^{\frac{f(x)}{x}}$
$y^{2}=x y \frac{d y}{d x}-x^{3} e^{\frac{y}{x}}$
$\frac{y}{x}=\frac{d y}{d x}-\frac{x^{2}}{y} e^{\frac{y}{x}}$
Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$
$v=v+x \frac{d v}{d x}-\frac{x}{v} e^{v}$
$\frac{d v}{d x}=\frac{e^{v}}{v} \Rightarrow e^{-v} v d v=d x$
Integrating both side
$\mathrm{e}^{\mathrm{v}}(\mathrm{x}+\mathrm{c})+1+\mathrm{v}=0$
$\mathrm{f}(1)=1 \Rightarrow \mathrm{x}=1, \mathrm{y}=1$
$\Rightarrow \mathrm{c}=-1-\frac{2}{\mathrm{e}}$
$\mathrm{e}^{\mathrm{v}}\left(-1-\frac{2}{\mathrm{e}}+\mathrm{x}\right)+1+\mathrm{v}=0$
$\mathrm{e}^{\frac{y}{x}}\left(-1-\frac{2}{\mathrm{e}}+\mathrm{x}\right)+1+\frac{\mathrm{y}}{\mathrm{x}}=0$
$\mathrm{x}=\mathrm{a}, \mathrm{y}=0 \Rightarrow \mathrm{a}=\frac{2}{\mathrm{e}}$
$\mathrm{ae}=2$
28. Remainder when $64^{32^{32}}$ is divided by 9 is equal to
\qquad .

Ans. 1
Sol. Let $32^{32}=\mathrm{t}$
$64^{32^{32}}=64^{\mathrm{t}}=8^{2 \mathrm{t}}=(9-1)^{2 \mathrm{t}}$
$=9 \mathrm{k}+1$
Hence remainder $=1$
29. Let the set $C=\left\{(x, y) \mid x^{2}-2^{y}=2023, x, y \in \mathbb{N}\right\}$. Then $\sum_{(x, y) \in C}(x+y)$ is equal to \qquad .
Ans. 46
Sol. $\mathrm{x}^{2}-2^{\mathrm{y}}=2023$
$\Rightarrow \mathrm{x}=45, \mathrm{y}=1$
$\sum_{(x, y) \in C}(x+y)=46$.
30. Let the slope of the line $45 x+5 y+3=0$ be $27 r_{1}+\frac{9 r_{2}}{2}$ for some $r_{1}, \quad r_{2} \in R$. Then $\operatorname{Lim}_{x \rightarrow 3}\left(\int_{3}^{x} \frac{8 t^{2}}{\frac{3 r_{2} x}{2}-r_{2} x^{2}-r_{1} x^{3}-3 x} d t\right)$ is equal to

Ans. 12
Sol. According to the question,

$$
27 r_{1}+\frac{9 r_{2}}{2}=-9
$$

$$
\lim _{x \rightarrow 3} \frac{\int_{3}^{x} 8 t^{2} d t}{\frac{3 r_{2} x}{2}-r_{2} x^{2}-r_{1} x^{3}-3 x}
$$

$$
=\lim _{x \rightarrow 3} \frac{8 x^{2}}{\frac{3 r_{2}^{2}}{2}-2 r_{2} x-3 r_{1} x^{2}-3}(\text { using LH' Rule })
$$

$$
=\frac{72}{\frac{3 r_{2}}{2}-6 r_{2}-27 r_{1}-3}
$$

$$
=\frac{72}{-\frac{9 r_{2}}{2}-27 r_{1}-3}
$$

$$
=\frac{72}{9-3}=12
$$

