OVERSEAS

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Monday 29th January, 2024)
TIME : 9:00 AM to 12: 00 NOON

MATHEMATICS

SECTION-A

1. If in a G.P. of 64 terms, the sum of all the terms is 7 times the sum of the odd terms of the G.P, then the common ratio of the G.P. is equal to
(1) 7
(2) 4
(3) 5
(4) 6

Ans. (4)
Sol. $a+a r+a r^{2}+a r^{3}+\ldots .+a r^{63}$
$=7\left(a+a r^{2}+a r^{4} \ldots .+a r^{62}\right)$
$\Rightarrow \frac{\mathrm{a}\left(1-\mathrm{r}^{64}\right)}{1-\mathrm{r}}=\frac{7 \mathrm{a}\left(1-\mathrm{r}^{64}\right)}{1-\mathrm{r}^{2}}$
$r=6$
2. In an A.P., the sixth terms $a_{6}=2$. If the $a_{1} a_{4} a_{5}$ is the greatest, then the common difference of the A.P., is equal to
(1) $\frac{3}{2}$
(2) $\frac{8}{5}$
(3) $\frac{2}{3}$
(4) $\frac{5}{8}$

Ans. (2)
Sol. $\quad a_{6}=2 \Rightarrow a+5 d=2$
$a_{1} a_{4} a_{5}=a(a+3 d)(a+4 d)$
$=(2-5 \mathrm{~d})(2-2 \mathrm{~d})(2-\mathrm{d})$
$f(d)=8-32 d+34 d^{2}-20 d+30 d^{2}-10 d^{3}$
$f^{\prime}(d)=-2(5 d-8)(3 d-2)$

$\mathrm{d}=\frac{8}{5}$

TEST PAPER WITH SOLUTION

3. If $f(x)=\left\{\begin{array}{l}2+2 x,-1 \leq x<0 \\ 1-\frac{x}{3}, 0 \leq x \leq 3\end{array} ; g(x)=\left\{\begin{array}{l}-x,-3 \leq x \leq 0 \\ x, 0<x \leq 1\end{array}\right.\right.$, then range of $(f o g(x))$ is
(1) $(0,1]$
(2) $[0,3)$
(3) $[0,1]$
(4) $[0,1)$

Ans. (3)
Sol. $f(g(x))=\left\{\begin{array}{lll}2+2 g(x), & -1 \leq g(x)<0 \\ 1-\frac{g(x)}{3}, & 0 \leq g(x) \leq 3\end{array}\right.$
By (1) $x \in \phi$
And by (2) $x \in[-3,0]$ and $x \in[0,1]$

Range of $\mathrm{f}(\mathrm{g}(\mathrm{x}))$ is [0, 1]
4. A fair die is thrown until 2 appears. Then the probability, that 2 appears in even number of throws, is
(1) $\frac{5}{6}$
(2) $\frac{1}{6}$
(3) $\frac{5}{11}$
(4) $\frac{6}{11}$

Ans. (3)
Sol. Required probability $=$

$$
\begin{aligned}
& \frac{5}{6} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{3} \times \frac{1}{6}+\left(\frac{5}{6}\right)^{5} \times \frac{1}{6}+\ldots \ldots \\
& =\frac{1}{6} \times \frac{\frac{5}{6}}{1-\frac{25}{36}}=\frac{5}{11}
\end{aligned}
$$

ALLEM
AIPOWERED APP
5. If $\mathrm{z}=\frac{1}{2}-2 \mathrm{i}$, is such that
$|z+1|=\alpha z+\beta(1+i), i=\sqrt{-1}$ and $\quad \alpha, \beta \in R \quad, \quad$ then $\alpha+\beta$ is equal to
(1) -4
(2) 3
(3) 2
(4) -1

Ans. (2)
Sol. $\mathrm{z}=\frac{1}{2}-2 \mathrm{i}$

$$
|z+1|=\alpha z+\beta(1+i)
$$

$$
\left|\frac{3}{2}-2 \mathrm{i}\right|=\frac{\alpha}{2}-2 \alpha \mathrm{i}+\beta+\beta \mathrm{i}
$$

$$
\left|\frac{3}{2}-2 \mathrm{i}\right|=\left(\frac{\alpha}{2}+\beta\right)+(\beta-2 \alpha) \mathrm{i}
$$

$\beta=2 \alpha$ and $\frac{\alpha}{2}+\beta=\sqrt{\frac{9}{4}+4}$
$\alpha+\beta=3$
6. $\lim _{x \rightarrow \frac{\pi}{2}}\left(\frac{1}{\left(x-\frac{\pi}{2}\right)^{2}} \int_{x^{3}}^{\left(\frac{\pi}{2}\right)^{3}} \cos \left(\frac{1}{t^{3}}\right) d t\right)$ is equal to
(1) $\frac{3 \pi}{8}$
(2) $\frac{3 \pi^{2}}{4}$
(3) $\frac{3 \pi^{2}}{8}$
(4) $\frac{3 \pi}{4}$

Ans. (3)
Sol. Using L'hopital rule

$$
\begin{aligned}
& =\lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{0-\cos x \times 3 x^{2}}{2\left(x-\frac{\pi}{2}\right)} \\
& =\lim _{x \rightarrow \frac{\pi^{-}}{2}} \frac{\sin \left(x-\frac{\pi}{2}\right)}{2\left(x-\frac{\pi}{2}\right)} \times \frac{3 \pi^{2}}{4} \\
& =\frac{3 \pi^{2}}{8}
\end{aligned}
$$

7. In a $\triangle \mathrm{ABC}$, suppose $\mathrm{y}=\mathrm{x}$ is the equation of the bisector of the angle B and the equation of the side AC is $2 \mathrm{x}-\mathrm{y}=2$. If $2 \mathrm{AB}=\mathrm{BC}$ and the point A and B are respectively $(4,6)$ and (α, β), then $\alpha+2 \beta$ is equal to
(1) 42
(2) 39
(3) 48
(4) 45

Ans. (1)
Sol.

$\mathrm{AD}: \mathrm{DC}=1: 2$
$\frac{4-\alpha}{6-\alpha}=\frac{10}{8}$
$\alpha=\beta$
$\alpha=14$ and $\beta=14$
8. Let \vec{a}, \vec{b} and \vec{c} be three non-zero vectors such that \vec{b} and \vec{c} are non-collinear .if $\vec{a}+5 \vec{b}$ is collinear with $\vec{c}, \vec{b}+6 \vec{c}$ is collinear with \vec{a} and $\vec{a}+\alpha \vec{b}+\beta \vec{c}=\overrightarrow{0}$, then $\alpha+\beta$ is equal to
(1) 35
(2) 30
(3) -30
(4) -25

Ans. (1)
Sol. $\vec{a}+5 \vec{b}=\lambda \vec{c}$
$\vec{b}+6 \vec{c}=\mu \vec{a}$
Eliminating \vec{a}
$\lambda \overrightarrow{\mathrm{c}}-5 \overrightarrow{\mathrm{~b}}=\frac{6}{\mu} \overrightarrow{\mathrm{c}}+\frac{1}{\mu} \overrightarrow{\mathrm{~b}}$
$\therefore \mu=\frac{-1}{5}, \lambda=-30$
$\alpha=5, \beta=30$
9. Let $\left(5, \frac{\mathrm{a}}{4}\right)$, be the circumcenter of a triangle with vertices $A(a,-2), B(a, 6)$ and $C\left(\frac{a}{4},-2\right)$. Let α denote the circumradius, β denote the area and γ denote the perimeter of the triangle. Then $\alpha+\beta+\gamma$ is
(1) 60
(2) 53
(3) 62
(4) 30

Ans. (2)
Sol. $\mathrm{A}(\mathrm{a},-2), \mathrm{B}(\mathrm{a}, 6), \mathrm{C}\left(\frac{\mathrm{a}}{4},-2\right), \mathrm{O}\left(5, \frac{\mathrm{a}}{4}\right)$
$\mathrm{AO}=\mathrm{BO}$
$(a-5)^{2}+\left(\frac{a}{4}+2\right)^{2}=(a-5)^{2}+\left(\frac{a}{4}-6\right)^{2}$
$\mathrm{a}=8$
$\mathrm{AB}=8, \mathrm{AC}=6, \mathrm{BC}=10$
$\alpha=5, \beta=24, \gamma=24$
10. For $\mathrm{x} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, if
$y(x)=\int \frac{\operatorname{cosec} x+\sin x}{\operatorname{cosec} x \sec x+\tan x \sin ^{2} x} d x$ and
$\lim _{x \rightarrow\left(\frac{\pi}{2}\right)^{-}} y(x)=0$ then $y\left(\frac{\pi}{4}\right)$ is equal to
(1) $\tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(2) $\frac{1}{2} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(3) $-\frac{1}{\sqrt{2}} \tan ^{-1}\left(\frac{1}{\sqrt{2}}\right)$
(4) $\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)$

Ans. (4)
Sol. $y(x)=\int \frac{\left(1+\sin ^{2} x\right) \cos x}{1+\sin ^{4} x} d x$
Put $\sin x=t$
$=\int \frac{1+\mathrm{t}^{2}}{\mathrm{t}^{4}+1} \mathrm{dt}=\frac{1}{\sqrt{2}} \tan ^{-1} \frac{\left(\mathrm{t}-\frac{1}{\mathrm{t}}\right)}{\sqrt{2}}+\mathrm{C}$
$x=\frac{\pi}{2}, t=1$
$\therefore \mathrm{C}=0$
$\mathrm{y}\left(\frac{\pi}{4}\right)=\frac{1}{\sqrt{2}} \tan ^{-1}\left(-\frac{1}{2}\right)$
11. If $\alpha,-\frac{\pi}{2}<\alpha<\frac{\pi}{2}$ is the solution of $4 \cos \theta+5 \sin \theta=1$, then the value of $\tan \alpha$ is
(1) $\frac{10-\sqrt{10}}{6}$
(2) $\frac{10-\sqrt{10}}{12}$
(3) $\frac{\sqrt{10}-10}{12}$
(4) $\frac{\sqrt{10}-10}{6}$

Ans. (3)
Sol. $4+5 \tan \theta=\sec \theta$
Squaring : $24 \tan ^{2} \theta+40 \tan \theta+15=0$
$\tan \theta=\frac{-10 \pm \sqrt{10}}{12}$
and $\tan \theta=-\left(\frac{10+\sqrt{10}}{12}\right)$ is Rejected.
(3) is correct.
12. A function $y=f(x)$ satisfies
$f(x) \sin 2 x+\sin x-\left(1+\cos ^{2} x\right) f^{\prime}(x)=0$ with condition
$f(0)=0$. Then $f\left(\frac{\pi}{2}\right)$ is equal to
(1) 1
(2) 0
(3) -1
(4) 2

Ans. (1)
Sol. $\frac{d y}{d x}-\left(\frac{\sin 2 x}{1+\cos ^{2} x}\right) y=\sin x$
I.F. $=1+\cos ^{2} x$
$y \cdot\left(1+\cos ^{2} x\right)=\int(\sin x) d x$
$=-\cos x+C$
$\mathrm{x}=0, \mathrm{C}=1$
$\mathrm{y}\left(\frac{\pi}{2}\right)=1$
13. Let O be the origin and the position vector of A and B be $2 \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+4 \hat{j}+4 \hat{k}$ respectively. If the internal bisector of $\angle A O B$ meets the line $A B$ at C , then the length of OC is
(1) $\frac{2}{3} \sqrt{31}$
(2) $\frac{2}{3} \sqrt{34}$
(3) $\frac{3}{4} \sqrt{34}$
(4) $\frac{3}{2} \sqrt{31}$
overseas

Ans. (2)
Sol.

length of $\mathrm{OC}=\frac{\sqrt{136}}{3}=\frac{2 \sqrt{34}}{3}$
14. Consider the function $\mathrm{f}:\left[\frac{1}{2}, 1\right] \rightarrow \mathrm{R}$ defined by $f(x)=4 \sqrt{2} x^{3}-3 \sqrt{2} x-1$. Consider the statements
(I) The curve $y=f(x)$ intersects the x-axis exactly at one point
(II) The curve $y=f(x)$ intersects the x-axis at $\mathrm{x}=\cos \frac{\pi}{12}$

Then
(1) Only (II) is correct
(2) Both (I) and (II) are incorrect
(3) Only (I) is correct
(4) Both (I) and (II) are correct

Ans. (4)
Sol. $\quad f^{\prime}(x)=12 \sqrt{2} x^{2}-3 \sqrt{2} \geq 0$ for $\left[\frac{1}{2}, 1\right]$
$f\left(\frac{1}{2}\right)<0$
$f(1)>0 \Rightarrow(A)$ is correct.
$f(x)=\sqrt{2}\left(4 x^{3}-3 x\right)-1=0$
Let $\cos \alpha=\mathrm{x}$,
$\cos 3 \alpha=\cos \frac{\pi}{4} \Rightarrow \alpha=\frac{\pi}{12}$
$\mathrm{x}=\cos \frac{\pi}{12}$
(4) is correct.
15. Let $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & \alpha & \beta \\ 0 & \beta & \alpha\end{array}\right]$ and $|2 A|^{\beta}=2^{21}$ where $\alpha, \beta \in Z$,

Then a value of α is
(1) 3
(2) 5
(3) 17
(4) 9

Ans. (2)
Sol. $|\mathrm{A}|=\alpha^{2}-\beta^{2}$
$|2 \mathrm{~A}|^{3}=2^{21} \Rightarrow|\mathrm{~A}|=2^{4}$
$\alpha^{2}-\beta^{2}=16$
$(\alpha+\beta)(\alpha-\beta)=16 \Rightarrow \alpha=4$ or 5
16. Let PQR be a triangle with $\mathrm{R}(-1,4,2)$. Suppose $\mathrm{M}(2,1,2)$ is the mid point of PQ. The distance of the centroid of $\triangle P Q R$ from the point of intersection of the line $\frac{x-2}{0}=\frac{y}{2}=\frac{z+3}{-1}$ and $\frac{x-1}{1}=\frac{y+3}{-3}=\frac{z+1}{1}$ is
(1) 69
(2) 9
(3) $\sqrt{69}$
(4) $\sqrt{99}$

Ans. (3)
Sol. Centroid G divides MR in $1: 2$
$\mathrm{G}(1,2,2)$
Point of intersection A of given lines is $(2,-6,0)$
$\mathrm{AG}=\sqrt{69}$
17. Let R be a relation on $\mathrm{Z} \times \mathrm{Z}$ defined by
$(a, b) R(c, d)$ if and only if $a d-b c$ is divisible by 5 .
Then R is
(1) Reflexive and symmetric but not transitive
(2) Reflexive but neither symmetric not transitive
(3) Reflexive, symmetric and transitive
(4) Reflexive and transitive but not symmetric

Ans. (1)

Sol. $(a, b) R(a, b)$ as $a b-a b=0$
Therefore reflexive
Let $(a, b) R(c, d) \Rightarrow a d-b c$ is divisible by 5
$\Rightarrow \mathrm{bc}-\mathrm{ad}$ is divisible by $5 \Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$
Therefore symmetric
Relation not transitive as $(3,1) R(10,5)$ and $(10,5) R(1,1)$ but $(3,1)$ is not related to $(1,1)$
18. If the value of the integral

$$
\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}}\left(\frac{x^{2} \cos x}{1+\pi^{\mathrm{x}}}+\frac{1+\sin ^{2} \mathrm{x}}{1+\mathrm{e}^{\sin x^{2033}}}\right) \mathrm{dx}=\frac{\pi}{4}(\pi+\mathrm{a})-2
$$

then the value of a is
(1) 3
(2) $-\frac{3}{2}$
(3) 2
(4) $\frac{3}{2}$

Ans. (1)
Sol. $I=\int_{-\pi / 2}^{\pi / 2}\left(\frac{x^{2} \cos x}{1+\pi^{x}}+\frac{1+\sin ^{2} x}{1+e^{\sin x^{2023}}}\right) d x$
$I=\int_{-\pi / 2}^{\pi / 2}\left(\frac{x^{2} \cos x}{1+\pi^{-x}}+\frac{1+\sin ^{2} x}{1+e^{\sin (-x)^{2023}}}\right) d x$
On Adding, we get
$2 I=\int_{-\pi / 2}^{\pi / 2}\left(x^{2} \cos x+1+\sin ^{2} x\right) d x$
On solving
$I=\frac{\pi^{2}}{4}+\frac{3 \pi}{4}-2$
$a=3$
19. Suppose
$f(x)=\frac{\left(2^{x}+2^{-x}\right) \tan x \sqrt{\tan ^{-1}\left(x^{2}-x+1\right)}}{\left(7 x^{2}+3 x+1\right)^{3}}$,
Then the value of $f^{\prime}(0)$ is equal to
(1) π
(2) 0
(3) $\sqrt{\pi}$
(4) $\frac{\pi}{2}$

Ans. (3)

Sol. $\quad f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}$
$=\lim _{\mathrm{h} \rightarrow 0} \frac{\left(2^{\mathrm{h}}+2^{-\mathrm{h}}\right) \tan \mathrm{h} \sqrt{\tan ^{-1}\left(\mathrm{~h}^{2}-\mathrm{h}+1\right)}-0}{\left(7 \mathrm{~h}^{2}+3 \mathrm{~h}+1\right)^{3} \mathrm{~h}}$
$=\sqrt{\pi}$
20. Let A be a square matrix such that $A A^{T}=I$. Then $\frac{1}{2} \mathrm{~A}\left[\left(\mathrm{~A}+\mathrm{A}^{\mathrm{T}}\right)^{2}+\left(\mathrm{A}-\mathrm{A}^{\mathrm{T}}\right)^{2}\right]$ is equal to
(1) $\mathrm{A}^{2}+\mathrm{I}$
(2) $A^{3}+I$
(3) $A^{2}+A^{T}$
(4) $A^{3}+A^{T}$

Ans. (4)
Sol. $\quad A^{T}=I=A^{T} A$
On solving given expression, we get
$\frac{1}{2} \mathrm{~A}\left[\mathrm{~A}^{2}+\left(\mathrm{A}^{\mathrm{T}}\right)^{2}+2 \mathrm{AA}^{\mathrm{T}}+\mathrm{A}^{2}+\left(\mathrm{A}^{T}\right)^{2}-2 \mathrm{AA}^{\mathrm{T}}\right]$
$=\mathrm{A}\left[\mathrm{A}^{2}+\left(\mathrm{A}^{\mathrm{T}}\right)^{2}\right]=\mathrm{A}^{3}+\mathrm{A}^{\mathrm{T}}$

SECTION-B

21. Equation of two diameters of a circle are $2 x-3 y=5$ and $3 x-4 y=7$. The line joining the points $\left(-\frac{22}{7},-4\right)$ and $\left(-\frac{1}{7}, 3\right)$ intersects the circle at only one point $\mathrm{P}(\alpha, \beta)$. Then $17 \beta-\alpha$ is equal to

Ans. (2)
Sol. Centre of circle is $(1,-1)$

Equation of AB is $7 \mathrm{x}-3 \mathrm{y}+10=0 \ldots$ (i)
Equation of CP is $3 x+7 y+4=0 \ldots$ (ii)
Solving (i) and (ii)
$\alpha=\frac{-41}{29}, \beta=\frac{1}{29} \quad \therefore 17 \beta-\alpha=2$
22. All the letters of the word "GTWENTY" are written in all possible ways with or without meaning and these words are written as in a dictionary. The serial number of the word "GTWENTY" IS

Ans. (553)
Sol. Words starting with $\mathrm{E}=360$
Words starting with GE $=60$
Words starting with $\mathrm{GN}=60$
Words starting with GTE $=24$
Words starting with GTN $=24$
Words starting with GTT $=24$
GTWENTY $=1$
Total $=553$
23. Let α, β be the roots of the equation $x^{2}-x+2=0$ with $\operatorname{Im}(\alpha)>\operatorname{Im}(\beta)$. Then $\alpha^{6}+\alpha^{4}+\beta^{4}-5 \alpha^{2}$ is equal to

Ans. (13)
Sol. $\alpha^{6}+\alpha^{4}+\beta^{4}-5 \alpha^{2}$
$=\alpha^{4}(\alpha-2)+\alpha^{4}-5 \alpha^{2}+(\beta-2)^{2}$
$=\alpha^{5}-\alpha^{4}-5 \alpha^{2}+\beta^{2}-4 \beta+4$
$=\alpha^{3}(\alpha-2)-\alpha^{4}-5 \alpha^{2}+\beta-2-4 \beta+4$
$=-2 \alpha^{3}-5 \alpha^{2}-3 \beta+2$
$=-2 \alpha(\alpha-2)-5 \alpha^{2}-3 \beta+2$
$=-7 \alpha^{2}+4 \alpha-3 \beta+2$
$=-7(\alpha-2)+4 \alpha-3 \beta+2$
$=-3 \alpha-3 \beta+16=-3(1)+16=13$
24. Let $f(x)=2^{x}-x^{2}, x \in R$. If m and n are respectively the number of points at which the curves $y=f(x)$ and $y=f^{\prime}(x)$ intersects the x-axis, then the value of $m+n$ is

Ans. (5)
Sol.

$\therefore \mathrm{m}=3$
$f^{\prime}(x)=2^{x} \ln 2-2 x=0$
$2^{x} \ln 2=2 x$

$\therefore \mathrm{n}=2$
$\Rightarrow \mathrm{m}+\mathrm{n}=5$
25. If the points of intersection of two distinct conics $x^{2}+y^{2}=4 b$ and $\frac{x^{2}}{16}+\frac{y^{2}}{b^{2}}=1$ lie on the curve $y^{2}=3 x^{2}$, then $3 \sqrt{3}$ times the area of the rectangle formed by the intersection points is \qquad
Ans. (432)
Sol. Putting $y^{2}=3 x^{2}$ in both the conics
We get $\mathrm{x}^{2}=\mathrm{b}$ and $\frac{\mathrm{b}}{16}+\frac{3}{\mathrm{~b}}=1$
$\Rightarrow \mathrm{b}=4,12 \quad \mathrm{~b}=4$ is rejected because curves coincide)
$\therefore \mathrm{b}=12$
Hence points of intersection are
$(\pm \sqrt{12}, \pm 6) \Rightarrow$ area of rectangle $=432$
26. If the solution curve $y=y(x)$ of the differential equation $\left(1+y^{2}\right)\left(1+\log _{e} x\right) d x+x d y=0, x>0$ passes through the point $(1,1)$ and $y(e)=\frac{\alpha-\tan \left(\frac{3}{2}\right)}{\beta+\tan \left(\frac{3}{2}\right)}$, then $\alpha+2 \beta$ is

Ans. (3)
Sol. $\int\left(\frac{1}{x}+\frac{\ln x}{x}\right) d x+\int \frac{d y}{1+y^{2}}=0$
$\ln x+\frac{(\ln x)^{2}}{2}+\tan ^{-1} y=C$
Put $x=y=1$
$\therefore \mathrm{C}=\frac{\pi}{4}$
$\Rightarrow \ln x+\frac{(\ln x)^{2}}{2}+\tan ^{-1} y=\frac{\pi}{4}$
Put $\mathrm{x}=\mathrm{e}$
$\Rightarrow \mathrm{y}=\tan \left(\frac{\pi}{4}-\frac{3}{2}\right)=\frac{1-\tan \frac{3}{2}}{1+\tan \frac{3}{2}}$
$\therefore \alpha=1, \beta=1$
$\Rightarrow \alpha+2 \beta=3$
27. If the mean and variance of the data $65,68,58,44$, $48,45,60, \alpha, \beta, 60$ where $\alpha>\beta$ are 56 and 66.2 respectively, then $\alpha^{2}+\beta^{2}$ is equal to

Ans. (6344)
Sol. $\overline{\mathrm{x}}=56$
$\sigma^{2}=66.2$
$\Rightarrow \frac{\alpha^{2}+\beta^{2}+25678}{10}-(56)^{2}=66.2$
$\therefore \alpha^{2}+\beta^{2}=6344$
28. The area (in sq. units) of the part of circle $x^{2}+y^{2}=169$ which is below the line $5 x-y=13$ is $\frac{\pi \alpha}{2 \beta}-\frac{65}{2}+\frac{\alpha}{\beta} \sin ^{-1}\left(\frac{12}{13}\right)$ where α, β are coprime numbers. Then $\alpha+\beta$ is equal to

Ans. (171)
Sol.

$$
\text { Area }=\int_{-13}^{12} \sqrt{169-y^{2}} d y-\frac{1}{2} \times 25 \times 5
$$

$=\frac{\pi}{2} \times \frac{169}{2}-\frac{65}{2}+\frac{169}{2} \sin ^{-1} \frac{12}{13}$

$$
\therefore \alpha+\beta=171
$$

29. If $\frac{{ }^{11} \mathrm{C}_{1}}{2}+\frac{{ }^{11} \mathrm{C}_{2}}{3}+\ldots . .+\frac{{ }^{11} \mathrm{C}_{9}}{10}=\frac{\mathrm{n}}{\mathrm{m}}$ with $\operatorname{gcd}(\mathrm{n}, \mathrm{m})=1$, then $n+m$ is equal to

Ans. (2041)

Sol. $\sum_{\mathrm{r}=1}^{9} \frac{{ }^{11} \mathrm{C}_{\mathrm{r}}}{\mathrm{r}+1}$
$=\frac{1}{12} \sum_{\mathrm{r}=1}^{9}{ }^{12} \mathrm{C}_{\mathrm{r}+1}$
$=\frac{1}{12}\left[2^{12}-26\right]=\frac{2035}{6}$
$\therefore \mathrm{m}+\mathrm{n}=2041$
30. A line with direction ratios $2,1,2$ meets the lines $\mathrm{x}=\mathrm{y}+2=\mathrm{z}$ and $\mathrm{x}+2=2 \mathrm{y}=2 \mathrm{z}$ respectively at the point P and Q . if the length of the perpendicular from the point $(1,2,12)$ to the line PQ is l, then l^{2} is

Ans. (65)
Sol. Let $P(t, t-2, t)$ and $Q(2 s-2, s, s)$
D.R's of PQ are 2, 1, 2
$\frac{2 \mathrm{~s}-2-\mathrm{t}}{2}=\frac{\mathrm{s}-\mathrm{t}+2}{1}=\frac{\mathrm{s}-\mathrm{t}}{2}$
$\Rightarrow t=6$ and $s=2$
$\Rightarrow \mathrm{P}(6,4,6)$ and $\mathrm{Q}(2,2,2)$
$\mathrm{PQ}: \frac{\mathrm{x}-2}{2}=\frac{\mathrm{y}-2}{1}=\frac{\mathrm{z}-2}{2}=\lambda$
Let $\mathrm{F}(2 \lambda+2, \lambda+2,2 \lambda+2)$
A(1,2,12)
$\overrightarrow{\mathrm{AF}} \cdot \overrightarrow{\mathrm{PQ}}=0$
$\therefore \lambda=2$
So $F(6,4,6)$ and $A F=\sqrt{65}$

