OVERSEAS

FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Tuesday 30th January, 2024)
TIME: 3:00 PM to 6: 00 PM

MATHEMATICS

SECTION-A

1. Consider the system of linear equations
$x+y+z=5, x+2 y+\lambda^{2} z=9$,
$x+3 y+\lambda z=\mu$, where $\lambda, \mu \in R$. Then, which of
the following statement is NOT correct?
(1) System has infinite number of solution if $\lambda=1$ and $\mu=13$
(2) System is inconsistent if $\lambda=1$ and $\mu \neq 13$
(3) System is consistent if $\lambda \neq 1$ and $\mu=13$
(4) System has unique solution if $\lambda \neq 1$ and $\mu \neq 13$

Ans. (4)
Sol. $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & 2 & \lambda^{2} \\ 1 & 3 & \lambda\end{array}\right|=0$
$\Rightarrow 2 \lambda^{2}-\lambda-1=0$
$\lambda=1,-\frac{1}{2}$
$\left|\begin{array}{ccc}1 & 1 & 5 \\ 2 & \lambda^{2} & 9 \\ 3 & \lambda & \mu\end{array}\right|=0 \Rightarrow \mu=13$
Infinite solution $\lambda=1 \& \mu=13$
For unique $\operatorname{sol}^{\mathrm{n}} \lambda \neq 1$

For no $\operatorname{sol}^{\mathrm{n}} \lambda=1 \& \mu \neq 13$
If $\lambda \neq 1$ and $\mu \neq 13$
Considering the case when $\lambda=-\frac{1}{2}$ and $\mu \neq 13$ this will generate no solution case
2. For $\alpha, \beta \in\left(0, \frac{\pi}{2}\right)$, let $3 \sin (\alpha+\beta)=2 \sin (\alpha-\beta)$ and a real number k be such that $\tan \alpha=\mathrm{k} \tan \beta$. Then the value of k is equal to:
(1) $-\frac{2}{3}$
(2) -5
(3) $\frac{2}{3}$
(4) 5

Ans. (2)

TEST PAPER WITH SOLUTION

Sol. $3 \sin \alpha \cos \beta+3 \sin \beta \cos \alpha$
$=2 \sin \alpha \cos \beta-2 \sin \beta \cos \alpha$
$5 \sin \beta \cos \alpha=-\sin \alpha \cos \beta$
$\tan \beta=-\frac{1}{5} \tan \alpha$
$\tan \alpha=-5 \tan \beta$
3. Let $A(\alpha, 0)$ and $B(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point P divide the line segment AB internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ and the corresponding focus be S. If from S, the perpendicular on the x -axis passes through P , then the length of the latus rectum of E is equal to
(1) $\frac{25}{3}$
(2) $\frac{32}{9}$
(3) $\frac{25}{9}$
(4) $\frac{32}{5}$

Ans. (4)
$\mathrm{A}=(10,0)$
Sol.
$\left.\mathrm{B}=\left(0, \frac{50}{7}\right)\right\} \mathrm{P}=(3,5)$

$\mathrm{ae}=3$
$\frac{\mathrm{a}}{\mathrm{e}}=\frac{25}{3}$
$a=5$
$b=4$
Length of $\mathrm{LR}=\frac{2 \mathrm{~b}^{2}}{\mathrm{a}}=\frac{32}{5}$
4. Let $\vec{a}=\hat{i}+\alpha \hat{j}+\beta \hat{k}, \alpha, \beta \in R$. Let a vector \vec{b} be such that the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$ and $|\vec{b}|^{2}=6$, If $\vec{a} \cdot \vec{b}=3 \sqrt{2}$, then the value of $\left(\alpha^{2}+\beta^{2}\right)|\vec{a} \times \vec{b}|^{2}$ is equal to
(1) 90
(2) 75
(3) 95
(4) 85

Ans. (1)
Sol. $|\overrightarrow{\mathrm{b}}|^{2}=6 ;|\overrightarrow{\mathrm{a}}||\overrightarrow{\mathrm{b}}| \cos \theta=3 \sqrt{2}$
$|\overrightarrow{\mathrm{a}}|^{2}|\overrightarrow{\mathrm{~b}}|^{2} \cos ^{2} \theta=18$
$|\vec{a}|^{2}=6$
Also $1+\alpha^{2}+\beta^{2}=6$
$\alpha^{2}+\beta^{2}=5$
to find
$\left(\alpha^{2}+\beta^{2}\right)|\overrightarrow{\mathrm{a}}|^{2}|\overrightarrow{\mathrm{~b}}|^{2} \sin ^{2} \theta$
$=(5)(6)(6)\left(\frac{1}{2}\right)$
$=90$
5. Let $f(x)=(x+3)^{2}(x-2)^{3}, x \in[-4,4]$. If M and m are the maximum and minimum values of f, respectively in $[-4,4]$, then the value of $M-m$ is :
(1) 600
(2) 392
(3) 608
(4) 108

Ans. (3)
Sol. $\quad f^{\prime}(x)=(x+3)^{2} \cdot 3(x-2)^{2}+(x-2)^{3} 2(x+3)$
$=5(x+3)(x-2)^{2}(x+1)$
$f^{\prime}(x)=0, x=-3,-1,2$

$f(-4)=-216$
$\mathrm{f}(-3)=0, \mathrm{f}(4)=49 \times 8=392$
$\mathrm{M}=392, \mathrm{~m}=-216$
$M-m=392+216=608$
Ans = '3'
6. Let a and b be be two distinct positive real numbers. Let $11^{\text {th }}$ term of a GP, whose first term is a and third term is b, is equal to $p^{\text {th }}$ term of another GP, whose first term is a and fifth term is b . Then p is equal to
(1) 20
(2) 25
(3) 21
(4) 24

Ans. (3)
Sol. $\quad 1^{\text {st }} \mathrm{GP} \Rightarrow \mathrm{t}_{1}=\mathrm{a}, \mathrm{t}_{3}=\mathrm{b}=\mathrm{ar}^{2} \Rightarrow \mathrm{r}^{2}=\frac{\mathrm{b}}{\mathrm{a}}$

$$
\mathrm{t}_{11}=\mathrm{ar}^{10}=\mathrm{a}\left(\mathrm{r}^{2}\right)^{5}=\mathrm{a} \cdot\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{5}
$$

$$
2^{\text {nd }} \text { G.P. } \Rightarrow T_{1}=a, T_{5}=a r^{4}=b
$$

$$
\begin{aligned}
& \Rightarrow r^{4}=\left(\frac{b}{a}\right) \Rightarrow r=\left(\frac{b}{a}\right)^{1 / 4} \\
& T_{p}=a r^{p-1}=a\left(\frac{b}{a}\right)^{\frac{p-1}{4}}
\end{aligned}
$$

$$
\mathrm{t}_{11}=\mathrm{T}_{\mathrm{p}} \Rightarrow \mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{5}=\mathrm{a}\left(\frac{\mathrm{~b}}{\mathrm{a}}\right)^{\frac{\mathrm{p}-1}{4}}
$$

$\Rightarrow 5=\frac{\mathrm{p}-1}{4} \Rightarrow \mathrm{p}=21$
7. If $x^{2}-y^{2}+2 h x y+2 g x+2 f y+c=0$ is the locus of a point, which moves such that it is always equidistant from the lines $x+2 y+7=0$ and $2 x-y$ $+8=0$, then the value of $\mathrm{g}+\mathrm{c}+\mathrm{h}-\mathrm{f}$ equals
(1) 14
(2) 6
(3) 8
(4) 29

Ans. (1)
Sol. Cocus of point $\mathrm{P}(\mathrm{x}, \mathrm{y})$ whose distance from Gives
$\mathrm{X}+2 \mathrm{y}+7=0 \& 2 \mathrm{x}-\mathrm{y}+8=0$ are equal is
$\frac{x+2 y+7}{\sqrt{5}}= \pm \frac{2 x-y+8}{\sqrt{5}}$
$(x+2 y+7)^{2}-(2 x-y+8)^{2}=0$

Combined equation of lines
$(x-3 y+1)(3 x+y+15)=0$
$3 x^{2}-3 y^{2}-8 x y+18 x-44 y+15=0$
$x^{2}-y^{2}-\frac{8}{3} x y+6 x-\frac{44}{3} y+5=0$
$x^{2}-y^{2}+2 h x y+2 g x 2+2 f y+c=0$
$\mathrm{h}=\frac{4}{3}, \mathrm{~g}=3, \mathrm{f}=-\frac{22}{3}, \mathrm{c}=5$
$\mathrm{g}+\mathrm{c}+\mathrm{h}-\mathrm{f}=3+5-\frac{4}{3}+\frac{22}{3}=8+6=14$
8. Let \vec{a} and \vec{b} be two vectors such that $|\vec{b}|=1$ and $|\vec{b} \times \vec{a}|=2$. Then $|(\vec{b} \times \vec{a})-\vec{b}|^{2}$ is equal to
(1) 3
(2) 5
(3) 1
(4) 4

Ans. (2)
Sol. $|\vec{b}|=1 \&|\vec{b} \times \vec{a}|=2$

$$
\begin{aligned}
& (\vec{b} \times \vec{a}) \cdot \vec{b}=\vec{b} \cdot(\vec{b} \times \vec{a})=0 \\
& |(\vec{b} \times \vec{a})-\vec{b}|^{2}=|\vec{b} \times \vec{a}|^{2}+|\vec{b}|^{2}
\end{aligned}
$$

$$
=4+1=5
$$

9. Let $y=f(x)$ be a thrice differentiable function in $(-5,5)$. Let the tangents to the curve $y=f(x)$ at $(1, \mathrm{f}(1))$ and $(3, \mathrm{f}(3))$ make angles $\frac{\pi}{6}$ and $\frac{\pi}{4}$, respectively with positive x-axis. If $27 \int_{1}^{3}\left(\left(f^{\prime}(t)\right)^{2}+1\right) \mathrm{f}^{\prime \prime}(\mathrm{t}) \mathrm{dt}=\alpha+\beta \sqrt{3} \quad$ where $\quad \alpha, \quad \beta$ are integers, then the value of $\alpha+\beta$ equals
(1) -14
(2) 26
(3) -16
(4) 36

Ans. (2)

Sol. $y=f(x) \Rightarrow \frac{d y}{d x}=f^{\prime}(x)$
$\left.\frac{d y}{d x}\right)_{(1, f(1))}=f^{\prime}(1)=\tan \frac{\pi}{6}=\frac{1}{\sqrt{3}} \Rightarrow f^{\prime}(1)=\frac{1}{\sqrt{3}}$
$\left.\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{(3, \mathrm{f}(3))}=\mathrm{f}^{\prime}(3)=\tan \frac{\pi}{4}=1 \Rightarrow \mathrm{f}^{\prime}(3)=1$
$27 \int_{1}^{3}\left(\left(f^{\prime}(\mathrm{t})\right)^{2}+1\right) \mathrm{f}^{\prime \prime}(\mathrm{t}) \mathrm{dt}=\alpha+\beta \sqrt{3}$
$I=\int_{1}^{3}\left(\left(f^{\prime}(t)\right)^{2}+1\right) f^{\prime \prime}(t) d t$
$\mathrm{f}^{\prime}(\mathrm{t})=\mathrm{z} \Rightarrow \mathrm{f}^{\prime}(\mathrm{t}) \mathrm{dt}=\mathrm{dz}$
$\mathrm{z}=\mathrm{f}^{\prime}(3)=1$
$z=f(1)=\frac{1}{\sqrt{3}}$
$I=\int_{1 / \sqrt{3}}^{1}\left(z^{2}+1\right) d z=\left(\frac{z^{3}}{3}+z\right)_{1 / \sqrt{3}}^{1}$
$=\left(\frac{1}{3}+1\right)-\left(\frac{1}{3} \cdot \frac{1}{3 \sqrt{3}}+\frac{1}{\sqrt{3}}\right)$
$=\frac{4}{3}-\frac{10}{9 \sqrt{3}}=\frac{4}{3}-\frac{10}{27} \sqrt{3}$
$\alpha+\beta \sqrt{3}=27\left(\frac{4}{3}-\frac{10}{27} \sqrt{3}\right)=36-10 \sqrt{3}$
$\alpha=36, \beta=-10$
$\alpha+\beta=36-10=26$
10. Let P be a point on the hyperbola $\mathrm{H}: \frac{\mathrm{x}^{2}}{9}-\frac{\mathrm{y}^{2}}{4}=1$, in the first quadrant such that the area of triangle formed by P and the two foci of H is $2 \sqrt{13}$. Then, the square of the distance of P from the origin is
(1) 18
(2) 26
(3) 22
(4) 20

Ans. (3)

Sol.

$\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$
$\mathrm{a}^{2}=9, \mathrm{~b}^{2}=4$
$b^{2}=a^{2}\left(e^{2}-1\right) \Rightarrow e^{2}=1+\frac{b^{2}}{a^{2}}$
$\mathrm{e}^{2}=1+\frac{4}{9}=\frac{13}{9}$
$\mathrm{e}=\frac{\sqrt{13}}{3} \Rightarrow \mathrm{~s}_{1} \mathrm{~s}_{2}=2 \mathrm{ae}=2 \times 3 \times \sqrt{\frac{13}{3}}=2 \sqrt{13}$
Area of $\Delta \mathrm{PS}_{1} \mathrm{~S}_{2}=\frac{1}{2} \times \beta \times \mathrm{S}_{1} \mathrm{~S}_{2}=2 \sqrt{13}$
$\Rightarrow \frac{1}{2} \times \beta \times(2 \sqrt{13})=2 \sqrt{13} \Rightarrow \beta=2$
$\frac{\alpha^{2}}{9}-\frac{\beta^{2}}{4}=1 \Rightarrow \frac{\alpha^{2}}{9}-1=1 \Rightarrow \alpha^{2}=18 \Rightarrow \alpha=3 \sqrt{2}$
Distance of P from origin $=\sqrt{\alpha^{2}+\beta^{2}}$

$$
=\sqrt{18+4}=\sqrt{22}
$$

11. Bag A contains 3 white, 7 red balls and bag B contains 3 white, 2 red balls. One bag is selected at random and a ball is drawn from it. The probability of drawing the ball from the bag A, if the ball drawn in white, is :
(1) $\frac{1}{4}$
(2) $\frac{1}{9}$
(3) $\frac{1}{3}$
(4) $\frac{3}{10}$

Ans. (3)

$c \mid$	A
3 W 7 R	3 W 2 R

$E_{2}: B$ is selected
E : white ball is drawn
$P\left(E_{1} / E\right)=$
$\frac{P(E) \cdot P\left(E / E_{1}\right)}{P\left(E_{1}\right) \cdot P\left(E / E_{1}\right)+P\left(E_{2}\right) \cdot P\left(E / E_{2}\right)}=\frac{\frac{1}{2} \times \frac{3}{10}}{\frac{1}{2} \times \frac{3}{10}+\frac{1}{2} \times \frac{3}{5}}$
$=\frac{3}{3+6}=\frac{1}{3}$
12. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be defined $\mathrm{f}(\mathrm{x})=a \mathrm{e}^{2 \mathrm{x}}+\mathrm{b} \mathrm{e}^{\mathrm{x}}+\mathrm{cx}$. If $f(0)=-1, f^{\prime}\left(\log _{e} 2\right)=21$ and $\int_{0}^{\log _{9} 4}(f(x)-c x) d x=\frac{39}{2}$, then the value of $|a+b+c|$ equals :
(1) 16
(2) 10
(3) 12
(4) 8

Ans. (4)
Sol. $\mathrm{f}(\mathrm{x})=\mathrm{ae}^{2 \mathrm{x}}+\mathrm{be}^{\mathrm{x}}+\mathrm{cx} \quad \mathrm{f}(0)=-1$

$$
\begin{array}{ll}
& a+b=-1 \\
f^{\prime}(x)=2 a e^{2 x}+b e^{x}+c \quad & f^{\prime}(\ln 2)=21 \\
& 8 a+2 b+c=21
\end{array}
$$

$\int_{0}^{\ln 4}\left(\mathrm{ae}^{2 \mathrm{x}}+\mathrm{be}^{\mathrm{x}}\right) \mathrm{dx}=\frac{39}{2}$
$\left[\frac{\mathrm{ae}^{2 \mathrm{x}}}{2}+\mathrm{be}^{\mathrm{x}}\right]_{0}^{\ln 4}=\frac{39}{2} \Rightarrow 8 \mathrm{a}+4 \mathrm{~b}-\frac{\mathrm{a}}{2}-\mathrm{b}=\frac{39}{2}$

$$
\begin{aligned}
& 15 a+6 b=39 \\
& 15 a-6 a-6=39 \\
& 9 a=45 \Rightarrow a=5 \\
& b=-6 \\
& c=21-40+12=-7 \\
& a+b+c-8 \\
& |a+b+c|=8
\end{aligned}
$$

13. Let $L_{1}: \vec{r}=(\hat{i}-\hat{j}+2 \hat{k})+\lambda(\hat{i}-\hat{j}+2 \hat{k}), \lambda \in R$
$L_{2}: \vec{r}=(\hat{j}-\hat{k})+\mu(3 \hat{i}+\hat{j}+p \hat{k}), \mu \in R$ and
$L_{3}: \overrightarrow{\mathrm{r}}=\delta(\ell \hat{\mathrm{i}}+\mathrm{m} \hat{\mathrm{j}}+\mathrm{n} \hat{\mathrm{k}}) \delta \in \mathrm{R}$
Be three lines such that L_{1} is perpendicular to L_{2} and L_{3} is perpendicular to both L_{1} and L_{2}. Then the point which lies on L_{3} is
(1) $(-1,7,4)$
(2) $(-1,-7,4)$
(3) $(1,7,-4)$
(4) $(1,-7,4)$

Ans. (1)
Sol. $\mathrm{L}_{1} \perp \mathrm{~L}_{2}$
$\mathrm{L}_{3} \perp \mathrm{~L}_{1}, \mathrm{~L}_{2}$
$3-1+2 \mathrm{P}=0$
$\mathrm{P}=-1$
$\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 2 \\ 3 & 1 & -1\end{array}\right|=-\hat{i}+7 \hat{j}+4 \hat{k}$
$\therefore(-\delta, 7 \delta, 4 \delta)$ will lie on L_{3}
For $\delta=1$ the point will be $(-1,7,4)$
14. Let a and b be real constants such that the function f defined by $f(x)=\left\{\begin{array}{cc}x^{2}+3 x+a & , x \leq 1 \\ b x+2 & , x>1\end{array}\right.$ be differentiable on R. Then, the value of $\int_{-2}^{2} f(x) d x$ equals
(1) $\frac{15}{6}$
(2) $\frac{19}{6}$
(3) 21
(4) 17

Ans. (4)
Sol. f is continuous

$$
f^{\prime}(x)=2 x+3, k<1
$$

$\therefore 4+\mathrm{a}=\mathrm{b}+2$

$$
\mathrm{b} \quad, \mathrm{x}>1
$$

$$
a=b-2
$$

f is differentiable

$$
\begin{array}{ll}
\therefore & b=5 \\
\therefore & a=3
\end{array}
$$

$\int_{-2}^{1}\left(x^{2}+3 x+3\right) d x+\int_{1}^{2}(5 x+2) d x$
$=\left[\frac{x^{3}}{3}+\frac{3 x^{2}}{2}+3 x\right]_{-2}^{1}+\left[\frac{5 x^{2}}{2}+2 x\right]_{1}^{2}$
$=\left(\frac{1}{3}+\frac{3}{2}+3\right)-\left(\frac{-8}{3}+6-6\right)+\left(10+4-\frac{5}{2}-2\right)$
$=6+\frac{3}{2}+12-\frac{5}{2}=17$
15. Let $\mathrm{f}: \mathbb{R}-\{0\} \rightarrow \mathbb{R}$ be a function satisfying $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)}$ for all $x, y, f(y) \neq 0$. If $f^{\prime}(1)=2024$,
then
(1) $x f^{\prime}(x)-2024 f(x)=0$
(2) $x f^{\prime}(x)+2024 f(x)=0$
(3) $x f^{\prime}(x)+f(x)=2024$
(4) $x f^{\prime}(x)-2023 f(x)=0$

Ans. (1)
Sol. $f\left(\frac{x}{y}\right)=\frac{f(x)}{f(y)} \quad f^{\prime}(1)=2024$

$$
f(1)=1
$$

Partially differentiating w. r. t. x
$f^{\prime}\left(\frac{x}{y}\right) \cdot \frac{1}{y}=\frac{1}{f(y)} f^{\prime}(x)$
$y \rightarrow x$
$\mathrm{f}^{\prime}(1) \cdot \frac{1}{\mathrm{x}}=\frac{\mathrm{f}^{\prime}(\mathrm{x})}{\mathrm{f}(\mathrm{x})}$
$2024 \mathrm{f}(\mathrm{x})=\mathrm{xf}^{\prime}(\mathrm{x}) \Rightarrow \mathrm{xf}^{\prime}(\mathrm{x})-2024 \mathrm{f}(\mathrm{x})=0$
16. If z is a complex number, then the number of common roots of the equation $z^{1985}+z^{100}+1=0$ and $z^{3}+2 z^{2}+2 z+1=0$, is equal to :
(1) 1
(2) 2
(3) 0
(4) 3

Ans. (2)
Sol. $z^{1985}+z^{100}+1=0 \quad \& \quad z^{3}+2 z^{2}+2 z+1=0$
$(z+1)\left(z^{2}-z+1\right)+2 z(z+1)=0$
$(z+1)\left(z^{2}+z+1\right)=0$
$\Rightarrow \quad \mathrm{z}=-1, \mathrm{z}=\mathrm{w}, \mathrm{w}^{2}$
Now putting $z=-1$ not satisfy
Now put $\mathrm{z}=\mathrm{w}$
$\Rightarrow \quad \mathrm{w}^{1985}+\mathrm{w}^{100}+1$
$\Rightarrow \quad \mathrm{w}^{2}+\mathrm{w}+1=0$
Also, $\mathrm{z}=\mathrm{w}^{2}$
$\Rightarrow \quad \mathrm{w}^{3970}+\mathrm{w}^{200}+1$
$\Rightarrow \quad \mathrm{w}+\mathrm{w}^{2}+1=0$
Two common root
17. Suppose $2-\mathrm{p}, \mathrm{p}, 2-\alpha, \alpha$ are the coefficient of four consecutive terms in the expansion of $(1+x)^{n}$. Then the value of $\mathrm{p}^{2}-\alpha^{2}+6 \alpha+2 p$ equals
(1) 4
(2) 10
(3) 8
(4) 6

Ans. (Bonus)
Sol. $2-p, p, 2-\alpha, \alpha$
Binomial coefficients are
${ }^{n} C_{r},{ }^{n} C_{r+1},{ }^{n} C_{r+2},{ }^{n} C_{r+3}$ respectively
$\Rightarrow \quad{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+1}=2$
$\Rightarrow \quad{ }^{n+1} C_{r+1}=2$
Also, ${ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+2}+{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}+3}=2$
$\Rightarrow \quad{ }^{n+1} C_{r+3}=2$
From (1) and (2)
${ }^{n+1} C_{r+1}={ }^{n+1} C_{r+3}$
$\Rightarrow \quad 2 \mathrm{r}+4=\mathrm{n}+1$
$\mathrm{n}=2 \mathrm{r}+3$
${ }^{2 r+4} C_{r+1}=2$
Data Inconsistent
18. If the domain of the function $f(x)=\log _{e}$ $\left(\frac{2 x+3}{4 x^{2}+x-3}\right)+\cos ^{-1}\left(\frac{2 x-1}{x+2}\right)$ is $\quad(\alpha, \beta]$, then the value of $5 \beta-4 \alpha$ is equal to
(1) 10
(2) 12
(3) 11
(4) 9

Ans. (2)
Sol. $\frac{2 \mathrm{x}+3}{4 \mathrm{x}^{2}+\mathrm{x}-3}>0$ and $-1 \leq \frac{2 \mathrm{x}-1}{\mathrm{x}+2} \leq 1$
$\frac{2 x+3}{(4 x-3)(x+1)}>0 \quad \frac{3 x+1}{x+2} \geq 0 \& \frac{x-3}{x+2} \leq 0$

-	+	-
$-3 / 2$	-1	+
$-4 / 4$		

$(-\infty,-2) \cup\left[\frac{-1}{3}, \infty\right)$
$(-2,3]$
$\left[\frac{-1}{3}, 3\right]$
(1) $\cap(2) \cap(3)$
$\left(\frac{3}{4}, 3\right]$
$\alpha=\frac{3}{4} \beta=3$
$5 \beta-4 \alpha=15-3=12$
19. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ be a function defined
$\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{\left(1+\mathrm{x}^{4}\right)^{1 / 4}}$ and $\mathrm{g}(\mathrm{x})=\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{f}(\mathrm{x}))))$ then
$18 \int_{0}^{\sqrt{2 \sqrt{5}}} x^{2} g(x) d x$
(1) 33
(2) 36
(3) 42
(4) 39

Ans. (4)
Sol. $\mathrm{f}(\mathrm{x})=\frac{\mathrm{x}}{\left(1+\mathrm{x}^{4}\right)^{1 / 4}}$
$\operatorname{fof}(x)=\frac{f(x)}{\left(1+f(x)^{4}\right)^{1 / 4}}=\frac{\frac{x}{\left(1+x^{4}\right)^{1 / 4}}}{\left(1+\frac{x^{4}}{1+x^{4}}\right)^{1 / 4}}=\frac{x}{\left(1+2 x^{4}\right)^{1 / 4}}$
$f(f(f(f(x))))=\frac{x}{\left(1+4 x^{4}\right)^{1 / 4}}$
$18 \int_{0}^{\sqrt{2 \sqrt{5}}} \frac{x^{3}}{\left(1+4 x^{4}\right)^{1 / 4}} d x$
Let $1+4 x^{4}=t^{4}$

$$
16 x^{3} d x=4 t^{3} d t
$$

$$
\frac{18}{4} \int_{1}^{3} \frac{\mathrm{t}^{3} \mathrm{dt}}{\mathrm{t}}
$$

$=\frac{9}{2}\left(\frac{\mathrm{t}^{3}}{3}\right)_{1}^{3}$
$=\frac{3}{2}[26]=39$
20. Let $R=\left(\begin{array}{ccc}x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z\end{array}\right)$ be a non-zero 3×3 matrix, where $\mathrm{x} \sin \theta=\mathrm{y} \sin \left(\theta+\frac{2 \pi}{3}\right)=\mathrm{z} \sin \left(\theta+\frac{4 \pi}{3}\right)$ $\neq 0, \theta \in(0,2 \pi)$. For a square matrix M, let trace (M) denote the sum of all the diagonal entries of M. Then, among the statements:
(I) Trace (R) $=0$
(II) If trace $(\operatorname{adj}(\operatorname{adj}(\mathrm{R}))=0$, then R has exactly one non-zero entry.
(1) Both (I) and (II) are true
(2) Neither (I) nor (II) is true
(3) Only (II) is true
(4) Only (I) is true

Ans. (2)

OVERSEAS

Sol. $\mathrm{x} \sin \theta=\mathrm{y} \sin \left(\theta+\frac{2 \pi}{3}\right)=\mathrm{z} \sin \left(\theta+\frac{4 \pi}{3}\right) \neq 0$
$\Rightarrow \mathrm{x}, \mathrm{y}, \mathrm{z} \neq 0$
Also,
$\sin \theta+\sin \left(\theta+\frac{2 \pi}{3}\right)+\sin \left(\theta+\frac{4 \pi}{3}\right)=0 \forall \theta \in \mathrm{R}$
$\Rightarrow \frac{1}{\mathrm{x}}+\frac{1}{\mathrm{y}}+\frac{1}{\mathrm{z}}=0$
$\Rightarrow x y+y z+z x=0$
(i) \quad Trace $(\mathrm{R})=x+y+z$

If $x+y+z=0$ and $x y+y z+z x=0$
$\Rightarrow x=y=z=0$
Statement (i) is False
(ii) $\quad \operatorname{Adj}(\operatorname{Adj}(\mathrm{R}))=|\mathrm{R}| \mathrm{R}$

Trace $(\operatorname{Adj}(\operatorname{Adj}(R)))$
$=x y z(x+y+z) \neq 0$
Statement (ii) is also False

SECTION-B

21. Let $Y=Y(X)$ be a curve lying in the first quadrant such that the area enclosed by the line $\mathrm{Y}-\mathrm{y}=\mathrm{Y}^{\prime}(\mathrm{x})(\mathrm{X}-\mathrm{x})$ and the co-ordinate axes, where (x, y) is any point on the curve, is always $\frac{-y^{2}}{2 \mathrm{Y}^{\prime}(\mathrm{x})}+1, \mathrm{Y}^{\prime}(\mathrm{x}) \neq 0$. If $\mathrm{Y}(1)=1$, then $12 \mathrm{Y}(2)$ equals \qquad .
Ans. (20)
Sol. $A=\frac{1}{2}\left(\frac{-y}{Y^{\prime}(x)}+x\right)(y-x Y / x)=\frac{-y^{2}}{2 Y^{\prime}(x)}+1$

$$
\Rightarrow\left(-y+x Y^{\prime}(x)\right)\left(y-x Y^{\prime}(x)\right)=-y^{2}+2 Y^{\prime}(x)
$$

$$
\begin{aligned}
-y^{2}+x y Y^{\prime}(x)+x y Y^{\prime}(x) & -x^{2}\left[Y^{\prime}(x)\right]^{2} \\
= & -y^{2}+2 Y^{\prime}(x)
\end{aligned}
$$

$$
2 x y-x^{2} Y^{\prime}(x)=2
$$

$$
\frac{d y}{d x}=\frac{2 x y-2}{x^{2}}
$$

$$
\frac{d y}{d x}-\frac{2}{x} y=\frac{-2}{x^{2}}
$$

$$
\text { I.F. }=\mathrm{e}^{-2 \ln \mathrm{x}}=\frac{1}{\mathrm{x}^{2}}
$$

$$
y \cdot \frac{1}{x^{2}}=\frac{2}{3} x^{-3}+c
$$

$$
\text { Put } x=1, y=1
$$

$$
1=\frac{2}{3}+\mathrm{c} \Rightarrow \mathrm{c}=\frac{1}{3}
$$

$$
\mathrm{Y}=\frac{2}{3} \cdot \frac{1}{\mathrm{X}}+\frac{1}{3} \mathrm{X}^{2}
$$

$$
\Rightarrow 12 \mathrm{Y}(2)=\frac{5}{3} \times 12=20
$$

22. Let a line passing through the point $(-1,2,3)$ intersect the lines $L_{1}: \frac{x-1}{3}=\frac{y-2}{2}=\frac{z+1}{-2}$ at $\mathrm{M}(\alpha, \beta, \gamma)$ and $L_{2}: \frac{\mathrm{x}+2}{-3}=\frac{\mathrm{y}-2}{-2}=\frac{\mathrm{z}-1}{4}$ at $\mathrm{N}(\mathrm{a}, \mathrm{b}$,
c). Then the value of $\frac{(\alpha+\beta+\gamma)^{2}}{(a+b+c)^{2}}$ equals \qquad .
Ans. (190)
Sol. $M(3 \lambda+1,2 \lambda+2,-2 \lambda-1) \quad \therefore \alpha+\beta+\gamma=3 \lambda+2$
$\mathrm{N}(-3 \mu-2,-2 \mu+2,4 \mu+1) \quad \therefore a+b+c=-\mu+1$

$$
\frac{3 \lambda+2}{-3 \mu-1}=\frac{2 \lambda}{-2 \mu}=\frac{-2 \lambda-4}{4 \mu-2}
$$

$$
3 \lambda \mu+2 \mu=3 \lambda \mu+\lambda
$$

$$
2 \mu=\lambda
$$

$$
2 \lambda \mu-\lambda=\lambda \mu+2 \mu
$$

$$
\lambda \mu=\lambda+2 \mu
$$

$$
\Rightarrow \lambda \mu=2 \lambda
$$

$\Rightarrow \mu=2 \quad(\lambda \neq 0)$
$\therefore \lambda=4$
$\alpha+\beta+\gamma=14$
$a+b+c=-1$
$\frac{(\alpha+\beta+\gamma)^{2}}{(a+b+c)^{2}}=196$
23. Consider two circles $\mathrm{C}_{1}: \mathrm{x}^{2}+\mathrm{y}^{2}=25$ and $\mathrm{C}_{2}:(\mathrm{x}-$ $\alpha)^{2}+y^{2}=16$, where $\alpha \in(5,9)$. Let the angle between the two radii (one to each circle) drawn from one of the intersection points of C_{1} and C_{2} be $\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)$. If the length of common chord of C_{1} and C_{2} is β, then the value of $(\alpha \beta)^{2}$ equals \qquad .
Ans. (1575)
Sol. $\quad C_{1}: x^{2}+y^{2}=25, C_{2}:(x-\alpha)^{2}+y^{2}=16$

$$
5<\alpha<9
$$

$\theta=\sin ^{-1}\left(\frac{\sqrt{63}}{8}\right)$
$\sin \theta=\frac{\sqrt{63}}{8}$
Area of $\triangle \mathrm{OAP}=\frac{1}{2} \times \alpha\left(\frac{\beta}{2}\right)=\frac{1}{2} \times 5 \times 4 \sin \theta$

$$
\begin{aligned}
& \Rightarrow \quad \alpha \beta=40 \times \frac{\sqrt{63}}{8} \\
& \alpha \beta=5 \times \sqrt{63} \\
&(\alpha \beta)^{2}=25 \times 63=1575
\end{aligned}
$$

24. Let $\alpha=\sum_{\mathrm{k}=0}^{\mathrm{n}}\left(\frac{\left({ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}\right)^{2}}{\mathrm{k}+1}\right)$ and $\beta=\sum_{\mathrm{k}=0}^{\mathrm{n}-1}\left(\frac{{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}}{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{k}+1}}{\mathrm{k}+2}\right)$.

If $5 \alpha=6 \beta$, then n equals \qquad -

Ans. (10)
26. In an examination of Mathematics paper, there are 20 questions of equal marks and the question paper is divided into three sections : A, B and C . A student is required to attempt total 15 questions taking at least 4 questions from each section. If section A has 8 questions, section B has 6 questions and section C has 6 questions, then the total number of ways a student can select 15 questions is \qquad .

Ans. (11376)
Sol. If 4 questions from each section are selected
Remaining 3 questions can be selected either in (1, $1,1)$ or $(3,0,0)$ or $(2,1,0)$
\therefore Total ways $={ }^{8} \mathrm{c}_{5} \cdot{ }^{6} \mathrm{c}_{5} \cdot{ }^{6} \mathrm{c}_{5}+{ }^{8} \mathrm{c}_{6}{ }^{6} \mathrm{c}_{5} \cdot{ }^{6} \mathrm{c}_{4} \times 2+$
${ }^{8} \mathrm{c}_{5} \cdot{ }^{6} \mathrm{c}_{6} \cdot{ }^{6} \mathrm{c}_{4} \times 2+{ }^{8} \mathrm{c}_{4} \cdot{ }^{6} \mathrm{c}_{6} \cdot{ }^{6} \mathrm{c}_{5} \times 2+{ }^{8} \mathrm{c}_{7} \cdot{ }^{6} \mathrm{c}_{4} \cdot{ }^{6} \mathrm{c}_{4}$
$=56.6 .6+28.6 .15 .2+56.15 .2+70.6 .2$
$+8.15 .15$
$=2016+5040+1680+840+1800=11376$
27. The number of symmetric relations defined on the set $\{1,2,3,4\}$ which are not reflexive is \qquad $-$.
Ans. (960)
Sol. Total number of relation both symmetric and reflexive $=2^{\frac{\mathrm{n}^{2}-\mathrm{n}}{2}}$

\Rightarrow Then number of symmetric relation which are not reflexive
$\Rightarrow 2^{\frac{\mathrm{n}(\mathrm{n}+1)}{2}}-2^{\frac{\mathrm{n}(\mathrm{n}-1)}{2}}$
$\Rightarrow 2^{10}-2^{6}$
$\Rightarrow 1024-64$

$$
=960
$$

28. The number of real solutions of the equation $x\left(x^{2}+3|x|+5|x-1|+6|x-2|\right)=0$ is \qquad _.

Ans. (1)

Sol. $x=0$ and $x^{2}+3|x|+5|x-1|+6|x-2|=0$
Here all terms are + ve except at $x=0$
So there is no value of x
Satisfies this equation
Only solution $\mathrm{x}=0$
No of solution 1 .
29. The area of the region enclosed by the parabola $(y-2)^{2}=x-1$, the line $x-2 y+4=0$ and the positive coordinate axes is \qquad .

Ans. (5)
Sol. Solving the equations
$(y-2)^{2}=x-1$ and $x-2 y+4=0$

$$
X=2(y-2)
$$

$\frac{x^{2}}{4}=x-1$
$x^{2}-4 x+4=0$
$(x-2)^{2}=0$
$\mathrm{x}=2$
Exclose area (w.r.t. y-axis) $=\int_{0}^{3} x d y-$ Area of Δ.
$=\int_{0}^{3}\left((y-2)^{2}+1\right) d y-\frac{1}{2} \times 1 \times 2$
$=\int_{0}^{3}\left(y^{2}-4 y+5\right) d y-1$
$=\left[\frac{y^{3}}{3}-2 y^{2}+5 y\right]_{0}^{3}-1$
$=9-18+15-1=5$
ce σ^{2} of the data

x_{i}	0	1	5	6	10	12	17
f_{i}	3	2	3	2	6	3	3

Is \qquad .
Ans. (29)
Sol.

x_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{2}$
0	3	0	0
1	2	2	2
5	3	15	75
6	2	12	72
10	6	60	600
12	3	36	432
17	3	51	867
	$\Sigma \mathrm{f}_{\mathrm{i}}=22$		$\Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{2}=2048$

$\therefore \quad \Sigma \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}=176$
So $\overline{\mathrm{x}}=\frac{\sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}}{\sum \mathrm{f}_{\mathrm{i}}}=\frac{176}{22}=8$
for $\sigma^{2}=\frac{1}{\mathrm{~N}} \sum \mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}{ }^{2}-(\overline{\mathrm{x}})^{2}$

$$
\begin{aligned}
& =\frac{1}{22} \times 2048-(8)^{2} \\
& =93.090964 \\
& =29.0909
\end{aligned}
$$

