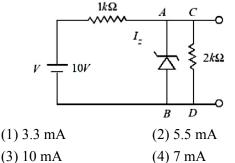
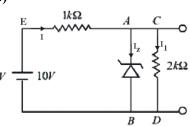


FINAL JEE-MAIN EXAMINATION - JANUARY, 2024

(Held On Monday 29th January, 2024)


PHYSICS

SECTION-A


TIME: 9:00 AM to 12:00 NOON

SOLUTION

31. In the given circuit, the breakdown voltage of the Zener diode is 3.0 V. What is the value of I_z ?

Ans. (2)

Sol.

 $V_z = 3V$ Let potential at B = 0 VPotential at $E(V_E) = 10 V$ $V_{C} = V_{A} = 3 V$ $I_z + I_1 = I$ $I = \frac{10 - 3}{1000} = \frac{7}{1000} A$

$$I_1 = \frac{3}{2000} A$$

Therefore
$$I_z = \frac{7 - 1.5}{1000} = 5.5 \text{mA}$$

32. The electric current through a wire varies with time as $I = I_0 + \beta t$. where $I_0 = 20$ A and $\beta = 3$ A/s. The amount of electric charge crossed through a section of the wire in 20 s is :

(1) 80 C (2) 1000 C (3) 800 C (4) 1600 C

Ans. (2)

Sol. Given that
Current I = I₀ +
$$\beta$$
t
I₀ = 20A
 β = 3A/s
I = 20 + 3t
 $\frac{dq}{dt}$ = 20 + 3t
 $\int_{0}^{q} dq = \int_{0}^{20} (20 + 3t) dt$
 $q = \int_{0}^{20} 20 dt + \int_{0}^{20} 3t dt$
 $q = \left[20t + \frac{3t^{2}}{2}\right]_{0}^{20} = 1000 \text{ C}$

33. Given below are two statements:

> Statement I : If a capillary tube is immersed first in cold water and then in hot water, the height of capillary rise will be smaller in hot water.

> Statement II : If a capillary tube is immersed first in cold water and then in hot water, the height of capillary rise will be smaller in cold water.

> In the light of the above statements, choose the *most appropriate* from the options given below

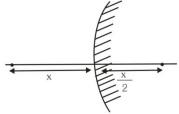
- (1) Both Statement I and Statement II are true
- (2) Both Statement I and Statement II are false
- (3) Statement I is true but Statement II is false
- (4) Statement I is false but Statement II is true

Ans. (3)

Surface tension will be less as temperature Sol. increases

$$h = \frac{2T\cos\theta}{\rho gr}$$

Height of capillary rise will be smaller in hot water and larger in cold water.



34. A convex mirror of radius of curvature 30 cm forms an image that is half the size of the object. The object distance is :

(1) - 15 cm	(2) 45 cm
(3) –45cm	(4) 15 cm

Ans. (1)

Sol.

Given R = 30 cm f = R/2 = +15 cm

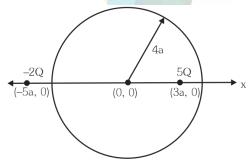
Magnification (m) = $\pm \frac{1}{2}$

For convex mirror, virtual image is formed for real object.

Therefore, m is +ve

$$\frac{1}{2} = \frac{f}{f - u}$$

$$u = -15 cm$$


35. Two charges of 5Q and -2Q are situated at the points (3a, 0) and (-5a, 0) respectively. The electric flux through a sphere of radius '4a' having center at origin is :

(2) $\frac{5Q}{\varepsilon_0}$

(4) <u>3Q</u>

(1)
$$\frac{2Q}{\varepsilon_0}$$

(3) $\frac{7Q}{\varepsilon_0}$
(2)

Ans. Sol.

5Q charge is inside the spherical region

flux through sphere =
$$\frac{5Q}{\varepsilon_0}$$

ALLE

AI POWERED APP

36. A body starts moving from rest with constant acceleration covers displacement S_1 in first (p - 1)seconds and S_2 in first p seconds. The displacement $S_1 + S_2$ will be made in time :

(1)
$$(2p+1)s$$

(2) $\sqrt{(2p^2-2p+1)s}$
(3) $(2p-1)s$

$$(4)(2p^2-2p+1)s$$

Ans. (2)

4

Sol. S_1 in first (p-1) sec

S₂ in first p sec
S₁ =
$$\frac{1}{2}a(p-1)^2$$

S₂ = $\frac{1}{2}a(p)^2$
S₄ + S₄ = $\frac{1}{2}at^2$

$$b_1 + b_2 = 2$$

(p-1)² + p² = t²
$$t = \sqrt{2p^2 + 1 - 2p}$$

- **37.** The potential energy function (in J) of a particle in a region of space is given as $U = (2x^2 + 3y^3 + 2z)$. Here x, y and z are in meter. The magnitude of x - component of force (in N) acting on the particle at point P (1, 2, 3) m is :
 - (1) 2 (2) 6

Ans. (3)

Sol. Given $U = 2x^2 + 3y^3 + 2z$

$$F_{x} = -\frac{\partial U}{\partial x} = -4x$$

At x = 1 magnitude of F_x is 4N

38.	The resistance $R = \frac{V}{I}$ where $V = (200 \pm 5) V$ and		
	$I = (20 \pm 0.2) A$, the percentage error in the		
	measurement of R is :		
	(1) 3.5%		
	(2) 7%		
	(3) 3%		
	(4) 5.5%		
Ans.	(1)		
Sol.	$R = \frac{V}{1}$		

According to error analysis

$$\frac{\mathrm{dR}}{\mathrm{R}} = \frac{\mathrm{dV}}{\mathrm{V}} + \frac{\mathrm{dI}}{\mathrm{I}}$$
$$\frac{\mathrm{dR}}{\mathrm{R}} = \frac{5}{200} + \frac{0.2}{20}$$
$$\frac{\mathrm{dR}}{\mathrm{R}} = \frac{7}{200}$$

% error
$$\frac{\mathrm{dR}}{\mathrm{R}} \times 100 = \frac{7}{200} \times 100 = 3.5\%$$

39. A block of mass 100 kg slides over a distance of 10 m on a horizontal surface. If the co-efficient of friction between the surfaces is 0.4, then the work done against friction (in J) is :

(1) 4200

(2) 3900

- (3) 4000
- (4) 4500

Ans. (3)

Sol. Given m = 100 kg

s = 10 m

$$\mu = 0.4$$

As $f = \mu mg = 0.4 \times 100 \times 10 = 400 N$

Now
$$W = f.s = 400 \times 10 = 4000 J$$

40. Match List I with List II

	List I		List II
A.	$\oint \vec{\mathbf{B}} \cdot \vec{\mathbf{dl}} = \mu_0 \dot{\mathbf{i}}_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$	I.	Gauss'
	$\Psi \mathbf{D}.\mathbf{d}\mathbf{I} = \mu_0 \mathbf{I}_c + \mu_0 \mathbf{\mathcal{E}}_0 \frac{\mathbf{d}t}{\mathbf{d}t}$		law for
			electricity
B.	$\oint \vec{E}.\vec{dl} = \frac{d\phi_{\rm B}}{dt}$	II.	Gauss'
	Ψ E.dl = $\frac{dt}{dt}$		law for
			magnetism
C.	$\oint \vec{E}.\vec{dA} = \frac{Q}{\varepsilon_0}$	III.	Faraday
	$\Psi^{\text{L.urr}} = \frac{\varepsilon_0}{\varepsilon_0}$		law
D.	$\oint \vec{B} \cdot \vec{dA} = 0$	IV.	Ampere –
	5		Maxwell
			law

Chose the correct answer from the options given below

(1) A-IV, B-I, C-III, D-II
 (2) A-II, B-III, C-I, D-IV
 (3) A-IV, B-III, C-I, D-II
 (4) A-I, B-II, C-III, D-IV

Ans. (3)

Sol. Ampere – Maxwell law

$$\rightarrow \oint \vec{B}.\vec{dl} = \mu_0 i_c + \mu_0 \varepsilon_0 \frac{d\phi_E}{dt}$$

Faraday law
$$\rightarrow \oint \vec{E}.\vec{dl} = \frac{d\phi_{\rm B}}{dt}$$

Gauss' law for electricity $\rightarrow \oint \vec{E} \cdot \vec{dA} = \frac{Q}{\varepsilon_0}$ Gauss ' law for magnetism $\rightarrow \oint \vec{B} \cdot \vec{dA} = 0$

41. If the radius of curvature of the path of two particles of same mass are in the ratio 3:4, then in order to have constant centripetal force, their velocities will be in the ratio of:

$$(1)\sqrt{3}:2$$
 $(2)1:\sqrt{3}$ $(3)\sqrt{3}:1$ $(4)2:\sqrt{3}$

Ans. (1)

ALLEN AI POWERED APP

Sol. Given $m_1 = m_2$

and
$$\frac{r_1}{r_2} = \frac{3}{4}$$

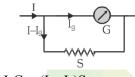
As centripetal force $F = \frac{mv^2}{r}$

In order to have constant (same in this question) centripetal force

$$F_1 = F_2$$

$$\frac{m_1 v_1^2}{r_1} = \frac{m_2 v_2^2}{r_2}$$

$$\Rightarrow \frac{v_1}{v_2} = \sqrt{\frac{r_1}{r_2}} = \frac{\sqrt{3}}{2}$$


42. A galvanometer having coil resistance 10Ω shows a full scale deflection for a current of 3mA. For it to measure a current of 8A, the value of the shunt should be:

(1) $3 \times 10^{-3} \Omega$	(2) $4.85 \times 10^{-3} \Omega$
(3) $3.75 \times 10^{-3} \Omega$	(4) $2.75 imes 10^{-3} \Omega$

Ans. (3)

- **Sol.** Given $G = 10 \Omega$
 - $I_g = 3mA$
 - I = 8A

In case of conversion of galvanometer into ammeter.

We have $I_gG = (I - I_g)S$

$$S = \frac{I_g G}{I - I_g}$$

$$S = \frac{(3 \times 10^{-3})10}{8 - 0.003} = 3.75 \times 10^{-3}\Omega$$

43. The de-Broglie wavelength of an electron is the same as that of a photon. If velocity of electron is 25% of the velocity of light, then the ratio of K.E. of electron and K.E. of photon will be:

(1)
$$\frac{1}{1}$$
 (2) $\frac{1}{8}$
(3) $\frac{8}{1}$ (4) $\frac{1}{4}$

Ans. (2)

ALLEN AI POWERED APP Sol. For photon

$$E_{p} = \frac{hc}{\lambda_{p}} \Longrightarrow \lambda_{p} = \frac{hc}{E_{p}}$$

For electron

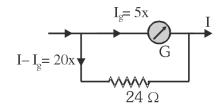
$$\lambda_{e} = \frac{h}{m_{e}v_{e}} = \frac{hv_{e}}{2K_{e}}$$
Given $v_{e} = 0.25 \text{ c}$

$$\lambda_{e} = \frac{h \times 0.25c}{2K_{e}} = \frac{hc}{8K_{e}}$$
Also $\lambda_{p} = \lambda_{e}$

$$\frac{hc}{E_{p}} = \frac{hc}{8K_{e}}$$

$$\frac{K_{e}}{E_{p}} = \frac{1}{8}$$

44. The deflection in moving coil galvanometer falls from 25 divisions to 5 division when a shunt of 24Ω is applied. The resistance of galvanometer coil will be :


(1) 12Ω	(2) 96Ω
(3) 48Ω	(4) 100Ω

Ans. (2)

Sol. Let x = current/division

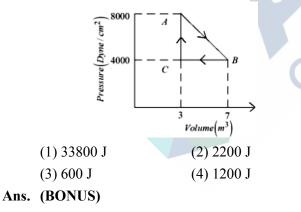
$$I_g=25x$$

After applying shunt

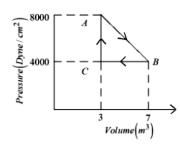
Now $5x \times G = 20x \times 24$ G = 4 × 24 G = 96Ω

- 45. A biconvex lens of refractive index 1.5 has a focal length of 20 cm in air. Its focal length when immersed in a liquid of refractive index 1.6 will be: (1) - 16 cm
 - (2) 160 cm(3) + 160 cm
 - (4) + 16 cm

Ans. (2)


 $\mu_l = 1.5$ Sol.

> $\mu_{\rm m} = 1.6$ $f_{a} = 20 \text{ cm}$


As
$$\frac{f_m}{f_a} = \frac{(\mu_1 - 1)\mu_m}{(\mu_1 - \mu_m)}$$

 $\frac{f_m}{20} = \frac{(1.5 - 1)1.6}{(1.5 - 1.6)}$

 $f_{\rm m} = -160 \, {\rm cm}$

A thermodynamic system is taken from an original 46. state A to an intermediate state B by a linear process as shown in the figure. It's volume is then reduced to the original value from B to C by an isobaric process. The total work done by the gas from A to B and B to C would be :

Sol.

ALLE AI POWERED APP Work done AB = $\frac{1}{2}$ (8000 + 6000) Dyne/cm² × $4m^3 = (6000Dyne/cm^2) \times 4m^3$ Work done BC = $-(4000 \text{ Dyne/cm}^2) \times 4\text{m}^3$ Total work done = 2000 Dyne/cm² \times 4m³ $=2 \times 10^{3} \times \frac{1}{10^{5}} \frac{N}{10^{2}} \times 4m^{3}$

$$= 2 \times 10^{-2} \times \frac{N}{10^{-4} m^2} \times 4m^3$$
$$= 2 \times 10^2 \times 4 Nm = 800 J$$

47. At what distance above and below the surface of the earth a body will have same weight, (take radius of earth as R.)

(1)
$$\sqrt{5R} - R$$
 (2) $\frac{\sqrt{3R} - R}{2}$
(3) $\frac{R}{2}$ (4) $\frac{\sqrt{5R} - R}{2}$
s. (4)
 gR^2 p

Sol.
$$g_p = \frac{gR^2}{(R+h)^2}$$

 $g_q = g\left(1 - \frac{h}{R}\right)$
 $g_p = g_q$
 $\frac{g}{\left(1 + \frac{h}{R}\right)^2} = g\left(1 - \frac{h}{R}\right)$
 $\left(1 - \frac{h^2}{R^2}\right)\left(1 + \frac{h}{R}\right) = 1$
Take $\frac{h}{R} = x$

So

$$x^{3} - x + x^{2} = 0$$

$$x = \frac{\sqrt{5} - 1}{2}$$

$$h = \frac{R}{2} (\sqrt{5} - 1)$$

- A capacitor of capacitance 100 µF is charged to a 48. potential of 12 V and connected to a 6.4 mH inductor to produce oscillations. The maximum current in the circuit would be :
 - (1) 3.2 A (2) 1.5 A А

- Ans. (2)
- Sol. By energy conservation

$$\frac{1}{2}CV^{2} = \frac{1}{2}LI_{max}^{2}$$
$$I_{max} = \sqrt{\frac{C}{L}}V$$
$$= \sqrt{\frac{100 \times 10^{-6}}{6.4 \times 10^{-3}}} \times 12$$
$$= \frac{12}{8} = \frac{3}{2} = 1.5 \text{ A}$$

- The explosive in a Hydrogen bomb is a mixture of 49. $_{1}H^{2}$, $_{1}H^{3}$ and $_{3}Li^{6}$ in some condensed form. The chain reaction is given by
 - $_{3}Li^{6} + _{0}n^{1} \rightarrow _{2}He^{4} + _{1}H^{3}$ $_{1}\text{H}^{2} + _{1}\text{H}^{3} \rightarrow _{2}\text{He}^{4} + _{0}n^{1}$

During the explosion the energy released is approximately

[Given : M(Li) = 6.01690 amu. $M(_1H^2) = 2.01471$ amu. M $(_{2}\text{He}^{4}) = 4.00388$ amu, and 1 amu = 931.5 MeV]

(1) 28.12 MeV (2) 12.64 MeV (4) 22.22 MeV (3) 16.48 MeV

Ans. (4)

Sol. ${}_{3}Li^{6} + {}_{0}n^{1} \rightarrow {}_{2}He^{4} + {}_{1}H^{3}$ $_{1}H^{2} + _{1}H^{3} \rightarrow _{2}He^{4} + _{0}n^{1}$

$$_{3}\mathrm{Li}^{6} +_{1}\mathrm{H}^{2} \rightarrow 2(_{2}\mathrm{He}^{4})$$

Energy released in process

$$Q = \Delta mc^2$$

 $Q = [M(Li) + M (_1H^2) - 2 \times M(_2He^4)] \times 931.5 \text{ MeV}$ $Q = [6.01690 + 2.01471 - 2 \times 4.00388] \times 931.5 \text{ MeV}$

Q = 22.216 MeV

Q = 22.22 MeV

50. Two vessels A and B are of the same size and are at same temperature. A contains 1g of hydrogen and B contains 1g of oxygen. $P_{\rm A}$ and $P_{\rm B}$ are the pressures of the gases in A and B respectively, then

(4) 32

$$\frac{P_A}{P_B} \text{ is :}$$
(1) 16 (2) 8 (3) 4
Ans. (1)
Sol.
$$\frac{P_A V_A}{P_B V_B} = \frac{n_A R T_A}{n_B R T_B}$$
Given $V_A = V_B$
And $T_A = T_B$

$$\frac{P_A}{P_B} = \frac{n_A}{n_B}$$

$$\frac{P_A}{P_B} = \frac{1/2}{-16}$$

 P_{B}

1/32

SECTION-B

51. When a hydrogen atom going from n = 2 to n = 1emits a photon, its recoil speed is $\frac{x}{5}m/s$. Where

_ . (Use : mass of hydrogen atom $\mathbf{x} =$ $= 1.6 \times 10^{-27}$ kg)

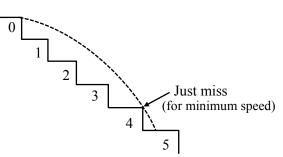
Ans. (17)

$$n=2$$

 $n=1$
Sol.
 $n=1$
 -3.4 eV
 -3.4 eV
 $\Delta E = 10.2 \text{ eV}$
Recoil speed(v) $= \frac{\Delta E}{mc}$
 10.2 eV

$$= \frac{1.6 \times 10^{-27} \times 3 \times 10^{8}}{1.6 \times 10^{-27} \times 3 \times 10^{8}}$$
$$= \frac{10.2 \times 1.6 \times 10^{-19}}{1.6 \times 10^{-27} \times 3 \times 10^{8}}$$

$$v = 3.4 \text{ m/s} = \frac{17}{5} \text{ m/s}$$


Therefore, x = 17

ALLE AI POWERED APP

52. A ball rolls off the top of a stairway with horizontal velocity u. The steps are 0.1 m high and 0.1 m wide. The minimum velocity u with which that ball just hits the step 5 of the stairway will be $\sqrt{x} \text{ ms}^{-1}$ where x =_____[use g = 10 m/s²]. Ans. (2) Sol.

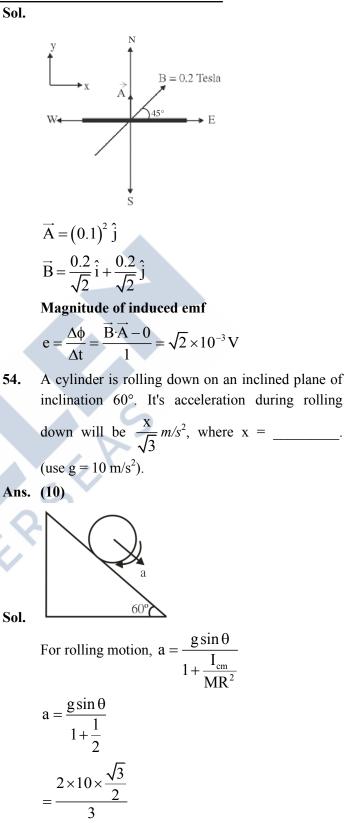
The ball needs to just cross 4 steps to just hit 5th step

Therefore, horizontal range (R) = 0.4 m

R = u.t

Similarly, in vertical direction

 $h = \frac{1}{2}gt^{2}$ $0.4 = \frac{1}{2}gt^{2}$ $0.4 = \frac{1}{2}g\left(\frac{0.4}{u}\right)^{2}$


 $2^{\circ}(u^{2} = 2)$ $u = \sqrt{2} \text{ m/s}$

Therefore, x = 2

53. A square loop of side 10 cm and resistance 0.7 Ω is placed vertically in east-west plane. A uniform magnetic field of 0.20 T is set up across the plane in north east direction. The magnetic field is decreased to zero in 1 s at a steady rate. Then, magnitude of induced emf is $\sqrt{x} \times 10^{-3}$ V. The value of x is _____.

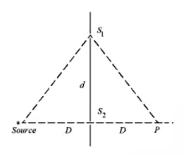
ALLEN AI POWERED APP

$$=\frac{10}{\sqrt{3}}$$

Therefore x = 10

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD


55. The magnetic potential due to a magnetic dipole at a point on its axis situated at a distance of 20 cm from its center is 1.5×10^{-5} Tm. The magnetic moment of the dipole is _____Am².

(Given :
$$\frac{\mu_0}{4\pi} = 10^{-7} \text{TmA}^{-1}$$
)

Ans. (6)

Sol.
$$V = \frac{\mu_0}{4\pi} \frac{M}{r^2}$$

 $\Rightarrow 1.5 \times 10^{-5} = 10^{-7} \times \frac{M}{(20 \times 10^{-2})^2}$
 $\Rightarrow M = \frac{1.5 \times 10^{-5} \times 20 \times 20 \times 10^{-4}}{10^{-7}}$
 $M = 1.5 \times 4 = 6$

56. In a double slit experiment shown in figure, when light of wavelength 400 nm is used, dark fringe is observed at P. If D = 0.2 m. the minimum distance between the slits S_1 and S_2 is _____ mm.

Ans. (0.20)

Sol. Path difference for minima at P

$$2\sqrt{D^{2} + d^{2}} - 2D = \frac{\lambda}{2}$$

$$\therefore \sqrt{D^{2} + d^{2}} - D = \frac{\lambda}{4}$$

$$\therefore \sqrt{D^{2} + d^{2}} = \frac{\lambda}{4} + D$$

$$\Rightarrow D^{2} + d^{2} = D^{2} + \frac{\lambda^{2}}{16} + \frac{D\lambda}{2}$$

$$\Rightarrow d^{2} = \frac{D\lambda}{2} + \frac{\lambda^{2}}{16}$$

$$\Rightarrow d^{2} = \frac{0.2 \times 400 \times 10^{-9}}{2} + \frac{4 \times 10^{-14}}{4}$$

$$\Rightarrow d^{2} \approx 400 \times 10^{-10}$$

$$\therefore d = 20 \times 10^{-5}$$

$$\Rightarrow d = 0.20 \text{ mm}$$

ALLEN AI POWERED APP 57. A 16Ω wire is bend to form a square loop. A 9V battery with internal resistance 1Ω is connected across one of its sides. If a 4μ F capacitor is connected across one of its diagonals, the energy

stored by the capacitor will be
$$\frac{x}{2}\mu J$$
. where

58. When the displacement of a simple harmonic oscillator is one third of its amplitude, the ratio of total energy to the kinetic energy is $\frac{x}{8}$, where

Sol. Let total energy =
$$E = \frac{1}{2}KA^2$$

 $U = \frac{1}{2}K\left(\frac{A}{3}\right)^2 = \frac{KA^2}{2 \times 9} = \frac{E}{9}$
 $KE = E - \frac{E}{9} = \frac{8E}{9}$
Ratio $\frac{\text{Total}}{KE} = \frac{E}{\frac{8E}{9}} = \frac{9}{8}$
 $x = 9$

Free Crash Courses for Class 10th | NEET | JEE

CLICK HERE TO DOWNLOAD

59. An electron is moving under the influence of the electric field of a uniformly charged infinite plane sheet S having surface charge density $+\sigma$. The electron at t = 0 is at a distance of 1 m from S and has a speed of 1 m/s. The maximum value of σ if the electron strikes S at t = 1 s is $\alpha \left[\frac{m \epsilon_0}{e}\right] \frac{C}{m^2}$ the value of α is

Sol. $u = 1 \text{ m/s}; a = -\frac{\sigma e}{2\epsilon_0 m}$ t = 1 s S = -1 mUsing $S = ut + \frac{1}{2}at^2$ $-1 = 1 \times 1 - \frac{1}{2} \times \frac{\sigma e}{2\epsilon_0 m} \times (1)^2$ $\therefore \sigma = 8 \frac{\epsilon_0 m}{e}$

 $\therefore \alpha = 8$

60. In a test experiment on a model aeroplane in wind tunnel, the flow speeds on the upper and lower surfaces of the wings are 70 ms⁻¹ and 65 ms⁻¹ respectively. If the wing area is 2 m^2 the lift of the wing is _____ N.

(Given density of air = 1.2 kg m^{-3})

Ans. (810)

Sol.
$$F = \frac{1}{2}\rho(v_1^2 - v_2^2)A$$

 $F = \frac{1}{2} \times 1.2 \times (70^2 - 65^2) \times 2$

$$= 810 \text{ N}$$

ALLEN AI POWERED APP

