

FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Thursday 04th April, 2024)

TEST PAPER WITH SOLUTION

TIME: 9:00 AM to 12:00 NOON

CHEMISTRY

SECTION-A

- 61. What pressure (bar) of H₂ would be required to make emf of hydrogen electrode zero in pure water at 25°C?
 - $(1)\ 10^{-14}$
- $(2)\ 10^{-7}$
- (3) 1
- (4) 0.5

Allen Ans. (1)

NTA Ans. (3)

Sol.
$$2e^- + 2H^+(aq) \rightarrow H_2(g)$$

$$E = E^{o} - \frac{0.059}{n} log \frac{P_{H_{2}}}{[H^{+}]^{2}}$$

$$0 = 0 - \frac{0.059}{2} log \frac{P_{H_2}}{(10^{-7})^2}$$

$$\log \frac{P_{H_2}}{(10^{-7})^2} = 0$$

$$\frac{P_{\rm H_2}}{10^{-14}} = 1$$

$$P_{H_2} = 10^{-14} \, bar$$

62. The correct sequence of ligands in the order of decreasing field strength is:

$$(1) \ \mathrm{CO} > \mathrm{H_2O} > \mathrm{F^-} > \mathrm{S^{2-}}$$

$$(2)$$
 $^{-}OH > F^{-} > NH_3 > CN^{-}$

(3)
$$NCS^- > EDTA^{4-} > CN^- > CO$$

(4)
$$S^{2-} > {}^{-}OH > EDTA^{4-} > CO$$

Ans. (1)

Sol. According to spectrochemical series ligand field strength is $CO > H_2O > F^- > S^{2-}$

63. Match List -I with List II:

List - I Mechanism steps		List - II Effect	
(A)	NH ₂ NH ₂ NH ₂	(I)	– E effect
(B)	+H++++	(II)	– R effect
(C)	→ The CN CN	(III)	+ E effect
(D)	$0 \leftarrow N = 0 \vdots N \rightarrow 0$	(IV)	+ R effect

Choose the **correct** answer from the options given

below:

$$(1)(A) - (IV), (B) - (III), (C) - (I), (D) - (II)$$

$$(2) (A) - (III), (B) - (I), (C) - (II), (D) - (IV)$$

$$(3)(A) - (II), (B) - (IV), (C) - (III), (D) - (I)$$

$$(4)(A) - (I), (B) - (II), (C) - (IV), (D) - (III)$$

Ans. (1)

Download the new ALLEN app & enroll for Online Programs

Sol.

$$\stackrel{\stackrel{\bullet}{\text{NH}_2}}{\longleftrightarrow} + R \text{ effect } \stackrel{\bullet}{\text{(NH}_2} \text{ electron donating)}$$

64. What will be the decreasing order of basic strength of the following conjugate bases ?

- (1) $C\overline{1} > OH > R\overline{O} > CH_3CO\overline{O}$
- (2) $R \overline{O} > \overline{O} + CH_3CO \overline{O} > C\overline{I}$
- (3) $\overline{OH} > R \overline{O} > CH_3 CO \overline{O} > C \overline{I}$
- (4) $\overline{C1} > R\overline{O} > \overline{OH} > CH_3CO\overline{O}$

Ans. (2)

Sol. Strong acid have weak conjugate base Acidic strength:

H–Cl > CH₃COOH > H₂O > R–OH Conjugate base strength :

$$Cl^- < CH_3COO^- < \overline{O}H < RO^-$$

- **65.** In the precipitation of the iron group (III) in qualitative analysis, ammonium chloride is added before adding ammonium hydroxide to:
 - (1) prevent interference by phosphate ions
 - (2) decrease concentration of OH ions
 - (3) increase concentration of Cl⁻ions
 - (4) increase concentration of NH₄⁺ ions

Ans. (2)

Sol.
$$NH_4OH \Longrightarrow NH_4^+ + OH^-$$

$$NH_4Cl \rightarrow NH_4^+ + Cl$$

Due to common ion effect of NH_4^+ ,

 $[OH^{-}]$ decreases in such extent that only group-III cation can be precipitated , due to their very low K_{sp} in the range of 10^{-38} .

Identify (B) and (C) and how are (A) and (C) related?

(B) (C)

(1)	OH Br	OH OH	functional group isomers
(2)	OH Br	OH Br	Derivative
(3)	Br	Br	position isomers
(4)	Br	Br	chain isomers

Ans. (3)

Sol.

Br
$$(A)$$

Br (B)
 $($

A and C are position isomer.

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD

Final JEE-Main Exam April, 2024/04-04-2024/Morning Session

- One of the commonly used electrode is calomel **67.** electrode. Under which of the following categories calomel electrode comes?
 - (1) Metal Insoluble Salt Anion electrodes
 - (2) Oxidation Reduction electrodes
 - (3) Gas Ion electrodes
 - (4) Metal ion Metal electrodes

Ans. (1)

- Sol. Theory based
- Number of complexes from the following with **68.** even number of unpaired "d" electrons is

 $[V(H_2O)_6]^{3+}$

 $[Cr(H_2O)_6]^{2+}$

 $[Fe(H_2O)_6]^{3+}$

 $[Ni(H_2O)_6]^{3+}, [Cu(H_2O)_6]^{2+}$

[Given atomic numbers : V = 23, Cr = 24, Fe = 26,

Ni = 28, Cu = 29

(1) 2

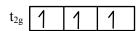
(2)4

(3)5

(4) 1

Ans. (1)

Sol. $[V(H_2O)_6]^{3+} \rightarrow d^2sp^3$


 $_{23}V := [Ar]3d^34s^2$

 V^{+3} :- [Ar]3 d^2 , n = 2 (even number of unpaired e⁻)

 $[Cr(H_2O)_6]^{2+} \rightarrow sp^3d^2$

 $_{24}$ Cr :- [Ar]3d⁵4s¹

 Cr^{+2} : - [Ar]3d⁴, n = 4 (even number of unpaired e⁻)

 $[Fe(H_2O)_6]^{3+} \rightarrow sp^3d^2$

 $Fe^{3+} := [Ar]3d^54s^0$

n = 5 (odd number of unpaired e⁻)

 $[Ni(H_2O)_6]^{3+} \rightarrow sp^3d^2$

 $Ni := [Ar]3d^84s^2$

 Ni^{+3} : - [Ar]3d⁷, n = 3 (odd number of unpaired e⁻)

 $\left[Cu(H_2O)_6\right]^{2+} \rightarrow sp^3d^2$

Cu :- $[Ar]3d^94s^0$

n = 1 (odd number of unpaired e⁻)

- **69.** Which one of the following molecules maximum dipole moment?
 - (1) NF₃

(2) CH₄

(3) NH₃

(4) PF₅

Ans. (3)

 $CH_4 \& PF_5$, $\mu_{net} = 0$ (non polar)

Vector addition of bond

Vector subtraction of bond

Number of molecules/ions from the following in **70.**

NO₃⁻, BCl₃, ClO₂⁻, ClO₃

hybridization is

(1) 2

(2)4

(3)3

(4) 1

which the central atom is involved in sp³

Ans. (1)

 sp^3

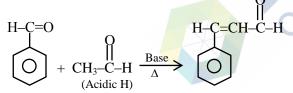
- 71. Which among the following is **incorrect** statement?
 - (1) Electromeric effect dominates over inductive effect
 - (2) The electromeric effect is, temporary effect
 - (3) The organic compound shows electromeric effect in the presence of the reagent only
 - (4) Hydrogen ion (H⁺) shows negative electromeric effect

Ans. (4)

Sol. Hydrogen ion (H⁺) shows positive electromeric effect.

Download the new ALLEN app & enroll for Online Programs

72. Given below are two statements:


Statement I : Acidity of α -hydrogens of aldehydes and ketones is responsible for Aldol reaction.

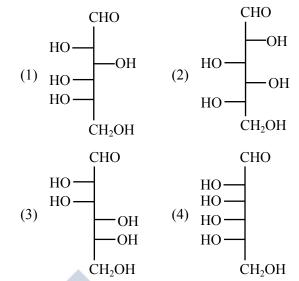
Statement II : Reaction between benzaldehyde and ethanal will NOT give Cross – Aldol product. In the light of above statements, choose the **most appropriate** answer from the options given below.

- (1) Both **Statement I** and **Statement II** are correct.
- (2) Both **Statement I** and **Statement II** are incorrect.
- (3) **Statement I** is incorrect but **Statement II** is correct.
- (4) **Statement I** is correct but **Statement II** is incorrect.

Ans. (4)

Sol. Aldehyde and ketones having acidic α -hydrogen show aldol reaction

Benzaldehyde Ethanal


Cross aldol product

- **73.** Which of the following nitrogen containing compound does not give Lassaigne's test?
 - (1) Phenyl hydrazine
- (2) Glycene
- (3) Urea
- (4) Hydrazine

Ans. (4)

Sol. Hydrazine (NH₂–NH₂) have no carbon so does not show Lassaigne's test.

74. Which of the following is the correct structure of L-Glucose?

Ans. (1)

Sol. Structure of L-Glucose is

- **75.** The element which shows only one oxidation state other than its elemental form is:
 - (1) Cobalt
- (2) Scandium
- (3) Titanium
- (4) Nickel

Ans. (2

- **Sol.** Co, Ti, Ni can show +2, +3 and +4 oxidation state, But 'Sc' only shows +3 stable oxidation state.
- **76.** Identify the product in the following reaction :

$$(1) \qquad OH \qquad (2) \qquad OH \qquad (3) \qquad OH \qquad (4) \qquad OH$$

Ans. (4)

Download the new ALLEN app & enroll for Online Programs

Final JEE-Main Exam April, 2024/04-04-2024/Morning Session

Sol.

$$\begin{array}{c} O \\ H \\ \hline HCl \end{array} \begin{array}{c} O \\ \hline HCl \end{array} \begin{array}{c} (Clemmensen \\ reduction) \end{array}$$

77. Number of elements from the following that CANNOT form compounds with valencies which match with their respective group valencies is

B, C, N, S, O, F, P, Al, Si

- (1)7(2) 5
- (3)6(4) 3

Ans. (4)

- Sol. N,O, F can't extend their valencies upto their group number due to the non-availability of vacant 2d like orbital.
- The Molarity (M) of an aqueous solution **78.** containing 5.85 g of NaCl in 500 mL water is :
 - (1)20
- (2) 0.2

- (3)2
- (4)4

(Given: Molar Mass Na: 23 and Cl: 35.5 gmol⁻¹)

Ans. (2)

Sol.
$$M = \frac{n_{\text{NaCl}}}{V_{\text{sol}} (\text{in L})}$$

$$M = \frac{\frac{5.85}{58.5}}{0.5} = 0.2 \,\text{M}$$

79. Identify the correct set of reagents or reaction conditions 'X' and 'Y' in the following set of transformation.

$$CH_3 - CH_2 - CH_2 - Br \xrightarrow{'X'} Product \xrightarrow{'Y'} CH_3 - CH - CH_3$$

$$Br$$

- (1) X = conc.alc. NaOH, 80°C , $Y = \text{Br}_2/\text{CHCl}_3$
- (2) X = dil.aq. NaOH, 20°C, Y = HBr/acetic acid
- (3) X = conc.alc. NaOH, 80°C, Y = HBr/acetic
- (4) X = dil.aq. NaOH, 20°C, $Y = Br_2/CHCl_3$

Ans. (3)

Sol. $CH_3-CH_2-CH_2-Br \xrightarrow{X=conc.alc.NaOH} \xrightarrow{80 \text{ }^{\circ}C}$

$$CH_3\!\!-\!\!CH\!\!=\!\!CH_2 \xrightarrow{\quad Y \equiv HBr/Acetic\,acid \quad} CH_3\!\!-\!\!CHBr-CH_3$$

80. The correct order of first ionization enthalpy values of the following elements is:

(A) O

- (B) N
- (C) Be
- (D) F

(E) B

Choose the correct answer from the options given

- (1) B < D < C < E < A (2) E < C < A < B < D
- (3) C < E < A < B < D (4) A < B < D < C < E

Ans. (2)

Correct order of Ist IE Sol.

$$Li < B < Be < C < O < N < F < Ne$$

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow$$

$$E < C \qquad < \quad A < B < D$$

SECTION-B

81. The enthalpy of formation of ethane (C_2H_6) from ethylene by addition of hydrogen where the bondenergies of C - H, C - C, H - H are 414 kJ, 347 kJ, 615 kJ and 435 kJ respectively is - kJ.

Ans. (125)

Sol.
$$C_2H_4(g) + H_2(g) \rightarrow C_2H_6(g)$$

 $\Delta H = BE(C = C) + 4BE(C - H) + BE(H - H)$
 $-BE(C - C) - 6BE(C - H)$
 $\Delta H = BE(C = C) + BE(H - H) - BE(C - C)$
 $-2BE(C - H)$
 $= 615 + 435 - 347 - 2 \times 414$
 $= -125 \text{ kJ}$

The number of correct reaction(s) among the 82. following is

$$(A) \bigcirc + \bigcirc C \bigcirc Cl \xrightarrow{Anhyd.AlCl_3} \bigcirc CH_2 \bigcirc CH_2$$

(B)
$$C$$
 Cl H_2 $COOH$

(D)
$$NH_2 \xrightarrow{H_3O^+} NH_2$$

Ans. (1)

Download the new ALLEN app & enroll for Online Programs

Sol.

$$(B) \begin{picture}(60,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$$

(C)
$$\bigcap \frac{\text{CO, HCl}}{\text{Anhy. AlCl}_3 / \text{CuCl}} \rightarrow \bigcap \text{CHO}$$
 (Correct)

(D)
$$CONH_2 \xrightarrow{H_3O^+} NH_2$$
 (Incorrect)

83. X g of ethylamine is subjected to reaction with $NaNO_2/HCl$ followed by water; evolved dinitrogen gas which occupied 2.24 L volume at STP. X is ____ $\times 10^{-1}$ g.

Ans. (45)

Sol.

$$\begin{array}{c} \text{CH}_{3}\text{CH}_{2}\text{NH}_{2} \xrightarrow{\text{NaNO}_{2} + \text{HCl}} \xrightarrow{\text{H}_{2}\text{O}} \text{CH}_{3}\text{CH}_{2} \text{-OH} + \text{N}_{2} \\ \text{Mol.wt.45g} \end{array}$$

given: N₂ evolved is 2.24 L i.e. 0.1 mole. i.e. CH₃CH₂NH₂ (ethyl amine) will be 4.5 g (=0.1 mole)

Hence the answer = 45×10^{-1} g

84. The de-Broglie's wavelength of an electron in the 4^{th} orbit is πa_0 . ($a_0 = Bohr$'s radius)

Ans. (8)

Sol.
$$2\pi r_n = n\lambda_d$$

$$2\pi a_0 \frac{n^2}{Z} = n\lambda_d$$

$$2\pi a_0 \frac{4^2}{1} = 4\lambda_d$$

$$\lambda_d = 8\pi a_0$$

85. Only 2 mL of KMnO₄ solution of unknown molarity is required to reach the end point of a titration of 20 mL of oxalic acid (2 M) in acidic medium. The molarity of KMnO₄ solution should be _____ M.

Allen Ans. (8)

NTA Ans. (50)

Sol. eq.(KMnO₄) = eq.(H₂C₂O₄)

$$M \times 2 \times 5 = 2 \times 20 \times 2$$

$$M = 8M$$

86. Consider the following reaction

$$MnO_2 + KOH + O_2 \rightarrow A + H_2O$$
.

Product 'A' in neutral or acidic medium disproportionate to give products 'B' and 'C' along with water. The sum of spin-only magnetic moment values of B and C is ______ BM. (nearest integer)

(Given atomic number of Mn is 25)

Ans. (4)

Sol.
$$MnO_2 + KOH + O_2 \rightarrow K_2MnO_4 + H_2O$$

(A)

$$K_2MnO_4 \xrightarrow{\text{Neutral/acidic solution}} KMnO_4 + MnO_2$$

$$Mn^{+4} :- [Ar]3d^3$$

$$n = 3$$
, $\mu = \sqrt{3(3+2)} = 3.87$ B.M.

Nearest integer is (4)

Download the new ALLEN app & enroll for Online Programs

87. Consider the following transformation involving first order elementary reaction in each step at constant temperature as shown below.

$$A + B \xrightarrow{\text{Step 1}} C \xrightarrow{\text{Step 2}} P$$

Some details of the above reaction are listed below.

Step	Rate constant (sec ⁻¹)	Activation energy (kJ mol ⁻¹)
1	\mathbf{k}_1	300
2	\mathbf{k}_2	200
3	\mathbf{k}_3	Ea ₃

If the overall rate constant of the above

transformation (k) is given as $k = \frac{k_1 k_2}{k_2}$ and the

overall activation energy (E_a) is 400 kJ mol⁻¹, then the value of Ea_3 is _____ kJ mol⁻¹ (nearest integer)

Ans. (100)

Sol.
$$K = \frac{K_1 K_2}{K_3}$$

$$Ae^{\frac{-E_{a}}{RT}} = \frac{A_{1}e^{\frac{-E_{a_{1}}}{RT}}\,A_{2}e^{\frac{-E_{a_{2}}}{RT}}}{A_{3}\,e^{\frac{-E_{a_{3}}}{RT}}}$$

$$Ae^{\frac{-E_{a}}{RT}} = \frac{A_{1}A_{2}}{A_{2}}e^{\frac{-(E_{a_{1}}+E_{a_{2}}-E_{a_{3}})}{RT}}$$

$$E_{a} = E_{a_{1}} + E_{a_{2}} - E_{a_{3}}$$

$$400 = 300 + 200 - E_{a_3}$$

$$E_{a_2} = 100 \text{ kJ/mole}$$

88. 2.5 g of a non-volatile, non-electrolyte is dissolved in 100 g of water at 25°C. The solution showed a boiling point elevation by 2°C. Assuming the solute concentration in negligible with respect to the solvent concentration, the vapour pressure of the resulting aqueous solution is _____ mm of Hg (nearest integer)

[Given : Molal boiling point elevation constant of water $(K_b) = 0.52 \text{ K. kg mol}^{-1}$,

1 atm pressure = 760 mm of Hg, molar mass of water = 18 g mol^{-1}]

Ans. (707)

Sol. $2 = 0.52 \times m$

$$m = \frac{2}{0.52}$$

According to question, solution is much diluted

so
$$\frac{\Delta P}{P^o} = \frac{n_{\text{solute}}}{n_{\text{solvent}}}$$

$$\frac{\Delta P}{P^{o}} = \frac{m}{1000} \times M_{solvent}$$

$$\Delta P = P^{\circ} \times \frac{m}{1000} \times M_{\text{solvent}}$$

$$=760 \times \frac{\frac{2}{0.52}}{1000} \times 18 = 52.615$$

 $P_5 = 760 - 52.615 = 707.385 \text{ mm of Hg}$

89. The number of different chain isomers for C_7H_{16} is

Ans. (9)

90. Number of molecules/species from the following having one unpaired electron is _____.

$$O_2, O_2^{-1}, NO, CN^{-1}, O_2^{2-}$$

Ans. (2)

Sol. According to M.O.T.

 $O_2 \rightarrow \text{no. of unpaired electrons} = 2$

 $O_2^- \rightarrow \text{no. of unpaired electron} = 1$

 $NO \rightarrow no.$ of unpaired electron = 1

 $CN^- \rightarrow \text{no. of unpaired electron} = 0$

 $O_2^{2-} \rightarrow$ no. of unpaired electron = 0

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD