(Held On Friday 05th April, 2024)

CHEMISTRY

SECTION-A

61. Match List - I with List - II.

List - I

(A) ICI
(B) ICI_{3}
(C) CIF_{5}
(D) IF_{7}

Choose the correct answer from the options given below:
(1) (A)-(I), (B)-(IV), C-(III), D-(II)
(2) (A)-(I), (B)-(III), C-(II), D-(IV)
(3) (A)-(IV), (B)-(I), C-(II), D-(III)
(4) (A)-(IV), (B)-(III), C-(II), D-(I)

Ans. (3)
Sol. A. I-Cl
(iv) linear

(I) T-shape
C.

(II) Square pyramidal

(III) Pentagonal bipyramidal
62. While preparing crystals of Mohr's salt, dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added to a mixture of ferrous sulphate and ammonium sulphate, before dissolving this mixture in water, dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ is added here to:
(1) prevent the hydrolysis of ferrous sulphate
(2) prevent the hydrolysis of ammonium sulphate
(3) make the medium strongly acidic
(4) increase the rate of formation of crystals

TEST PAPER WITH SOLUTION

Sol. Fe^{+2} ions undergoes hydrolysis, therefore while preparing aqueous solution of ferrous sulphate and ammonium sulphate in water dilute sulphuric acid is added to prevent hydrolysis of ferrous sulphate.
63. Identify the major product in the following reaction.

(1)

(2)

(3)

(4)

Ans. (3)
Sol.

64. The correct nomenclature for the following compound is:

(1) 2-carboxy-4-hydroxyhept-6-enal
(2) 2-carboxy-4-hydroxyhept-7-enal
(3) 2-formyl-4-hydroxyhept-6-enoic acid
(4) 2-formyl-4-hydroxyhept-7-enoic acid

Ans. (3)

Download the new ALLEN app \& enroll for Online Programs

Sol.

2-formly-4-hydroxyhept-6-enoic acid
65. Given below are two statements : one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A) : NH_{3} and NF_{3} molecule have pyramidal shape with a lone pair of electrons on nitrogen atom. The resultant dipole moment of NH_{3} is greater than that of NF_{3}.
Reason (R): In NH_{3}, the orbital dipole due to lone pair is in the same direction as the resultant dipole moment of the $\mathrm{N}-\mathrm{H}$ bonds. F is the most electronegative element.

In the light of the above statements, choose the correct answer from the options given below:
(1) Both (A) and (R) are true and (R) is the correct explanation of (A)
(2)(A) is false but (R) is true
(3)(A) is true but (R) is false
(4) Both (A) and (R) are true but (\mathbf{R}) is NOT the correct explanation of (A)

Ans. (1)

Sol.

Resultant dipole moment $=0.80 \times 10^{-30} \mathrm{Cm}$

Resultant dipole moment $=4.90 \times 10^{-30} \mathrm{~cm}$
66. Given below are two statements:

Statement I : On passing $\mathrm{HCl}_{(\mathrm{g})}$ through a saturated solution of BaCl_{2}, at room temperature white turbidity appears.
Statement II : When HCl gas is passed through a saturated solution of NaCl , sodium chloride is precipitated due to common ion effect.
In the light of the above statements, choose the most appropriate answer from the options given below:
(1) Statement I is correct but Statement II is incorrect
(2) Both Statement I and Statement II are incorrect
(3) Statement I is incorrect but Statement II is correct
(4) Both Statement I and Statement II are correct

Ans. (1)
Sol. $\mathrm{BaCl}_{2}, \mathrm{NaCl}$ are soluble but on adding $\mathrm{HCl}(\mathrm{g})$ to $\mathrm{BaCl}_{2}, \mathrm{NaCl}$ solutions, Sodium or Barium chlorides may precipitate out, as a consequence of the law of mass action.
67. The metal atom present in the complex MABXL (where $\mathrm{A}, \mathrm{B}, \mathrm{X}$ and L are unidentate ligands and M is metal) involves sp^{3} hybridization. The number of geometrical isomers exhibited by the complex is:
(1) 4
(2) 0
(3) 2
(4) 3

Ans. (2)
Sol. Tetrahedral complex does not show geometrical isomerism.
68. Match List - I with List - II.

List - I

(Pair of Compounds)
(A) n-propanol and Isopropanol
(B) Methoxypropane and ethoxyethane
(C) Propanone and propanal
(D) Neopentane and Isopentane

List - II

 (Isomerism)(I) Metamerism
(II) Chain Isomerism
(III) Position Isomerism
(IV) Functional Isomerism
(1) (A)-(II), (B)-(I), (C)-(IV), (D)-(III)
(2) (A)-(III), (B)-(I), (C)-(II), (D)-(IV)
(3) (A)-(I), (B)-(III), (C)-(IV), (D)-(II)
(4) (A)-(III), (B)-(I), (C)-(IV), (D)-(II)

Ans. (4)

Sol.

 \Rightarrow Position isomers

\Rightarrow Metamers

\Rightarrow Functional isomers

neopentane
\&

isopentane
69. The quantity of silver deposited when one coulomb charge is passed through AgNO_{3} solution:
(1) 0.1 g atom of silver
(2) 1 chemical equivalent of silver
(3) 1 g of silver
(4) 1 electrochemical equivalent of silver

Ans. (4)
Sol. $\mathrm{W}=\mathrm{ZIt}$
$W=Z Q$
$\mathrm{Q}=\frac{\mathrm{W}}{\mathrm{Z}}$
$\mathrm{W}=\mathrm{ZQ}=$ (electrochemical equivalent)
70. Which one of the following reactions is NOT possible?
(1)

(2)

(3)

(4)

Ans. (2)

Sol.

71. Given below are two statements :

Statement I : The metallic radius of Na is $1.86 \mathrm{~A}^{\circ}$ and the ionic radius of Na^{+}is lesser than $1.86 \mathrm{~A}^{\circ}$.
Statement II : Ions are always smaller in size than the corresponding elements.
In the light of the above statements, choose the correct answer from the options given below :
(1) Statement I is correct but Statement II is false
(2) Both Statement I and Statement II are true
(3) Both Statement I and Statement II are false
(4) Statement I is incorrect but Statement II is true
Ans. (1)
Sol. $\quad r_{\mathrm{Na}}>\mathrm{r}_{\mathrm{Na}^{+}}$
So, Statement (I) is correct but size of anions are greater than size of neutral atoms.
So statement (II) is incorrect.
72. $\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{OH} \xrightarrow[\text { (ii) } \mathrm{KMnO}_{4}]{\text { (i) Jone's Reagent }} \mathrm{P}$
(iii) $\mathrm{NaOH}, \mathrm{CaO}, \Delta$

Consider the above reaction sequence and identify the major product P .
(1) Methane
(2) Methanal
(3) Methoxymethane
(4) Methanoic acid

Ans. (1)

Sol. $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$

73. Consider the given chemical reaction :

Product "A" is :
(1) picric acid
(2) oxalic acid
(3) acetic acid
(4) adipic acid

Ans. (4)

Sol.

Download the new ALLEN app \& enroll for Online Programs

77. The number of ions from the following that have the ability to liberate hydrogen from a dilute acid is
\qquad . $\mathrm{Ti}^{2+}, \mathrm{Cr}^{2+}$ and V^{2+}
(1) 0
(2) 2
(3) 3
(4) 1

Ans. (3)
Sol. The ions $\mathrm{Ti}^{+2}, \mathrm{~V}^{+2} \mathrm{Cr}^{+2}$ are strong reducing agents and will liberate hydrogen from a dilute acid, eg.
$2 \mathrm{Cr}_{(\mathrm{aq} .)}^{+2}+2 \mathrm{H}_{(\mathrm{aq} .)}^{+} \longrightarrow 2 \mathrm{Cr}_{(\mathrm{aq}, \mathrm{)}}^{+3}+\mathrm{H}_{2}(\mathrm{~g})$
78. Identify A and B in the given chemical reaction sequence :-

(1)

(2) A

(3)
 , B -

(4) A

Ans. (2)
Sol.

(A)
(B)
Download the new ALLEN app \& enroll for Online Programs
79. The correct statements from the following are :
(A) The decreasing order of atomic radii of group 13 elements is $\mathrm{Tl}>\mathrm{In}>\mathrm{Ga}>\mathrm{Al}>\mathrm{B}$.
(B) Down the group 13 electronegativity decreases from top to bottom.
(C) Al dissolves in dil. HCl and liberate H_{2} but conc. HNO_{3} renders Al passive by forming a protective oxide layer on the surface.
(D) All elements of group 13 exhibits highly stable +1 oxidation state.
(E) Hybridisation of Al in $\left[\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ ion is $s p^{3} d^{2}$
Choose the correct answer from the options given below :
(1) (C) and (E) only
(2) (A), (C) and (E) only
(3) (A), (B), (C) and (E) only
(4) (A) and (C) only

Ans. (1)
Sol. A. size order $\mathrm{T} \ell>\mathrm{In}>\mathrm{Al}>\mathrm{Ga}>\mathrm{B}$
B. Electronegativity order $\mathrm{B}>\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{T} \ell$
D. B, Al are more stable in +3 oxidation state

So, only C, E statements are correct.
80. Coagulation of egg, on heating is because of :
(1) Denaturation of protein occurs
(2) The secondary structure of protein remains unchanged
(3) Breaking of the peptide linkage in the primary structure of protein occurs
(4) Biological property of protein remains unchanged

Ans. (1)
Sol. Coagulation of egg give primary structure of protein, which is known as denaturation of protein

SECTION-B

81. Combustion of 1 mole of benzene is expressed at
$\mathrm{C}_{6} \mathrm{H}_{6}(1)+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(1)$.
The standard enthalpy of combustion of 2 mol of benzene is - ' x ' kJ .
$\mathrm{x}=$ \qquad .
(1) standard Enthalpy of formation of 1 mol of $\mathrm{C}_{6} \mathrm{H}_{6}(1)$, for the reaction 6 C (graphite) $+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(1)$ is $48.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(2) Standard Enthalpy of formation of 1 mol of $\mathrm{CO}_{2}(\mathrm{~g})$, for the reaction C (graphite) $+\mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ is $-393.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$.
(3) Standard and Enthalpy of formation of 1 mol of $\mathrm{H}_{2} \mathrm{O}(1)$, for the reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(1) \text { is }-286 \mathrm{~kJ} \mathrm{~mol}^{-1}
$$

Ans. (6535)
Sol. $6 \mathrm{C}($ graphite $)+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\ell) ; \Delta \mathrm{H}=48.5$
$\mathrm{kJ} / \mathrm{mol}$
C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) ; \Delta \mathrm{H}=-393.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}^{(\mathrm{g})}+\frac{1}{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\ell) ; \Delta \mathrm{H}=-286 \mathrm{~kJ} / \mathrm{mol}$
equation $-(1) \times 1+(2) \times 6+(3) \times 3$
$-48.5-6 \times 393.5-3 \times 286$
$=-3267.5 \mathrm{~kJ}$ for 1 mol
$=-6535 \mathrm{~kJ}$ for 2 mol
Ans. 6535 kJ
82. The fusion of chromite ore with sodium carbonate in the presence of air leads to the formation of products A and B along with the evolution of CO_{2}. The sum of spin-only magnetic moment values of A and B is \qquad B.M. (Nearest integer)
(Given atomic number : C : 6, $\mathrm{Na}: 11, \mathrm{O}: 8$, $\mathrm{Fe}: 26, \mathrm{Cr}: 24]$
Ans. (6)
Sol. $4 \mathrm{FeCr}_{2} \mathrm{O}_{4}+8 \mathrm{Na}_{2} \mathrm{CO}_{3}+7 \mathrm{O}_{2} \rightarrow$

$$
8 \mathrm{Na}_{2} \mathrm{CrO}_{4}+2 \mathrm{Fe}_{2} \mathrm{O}_{3}+8 \mathrm{CO}_{2}
$$

$\mathrm{A} \quad \mathrm{B}$
Spin only magnetic moment
For $\mathrm{Na}_{2} \mathrm{CrO}_{4} \quad \mu_{\mathrm{B}}=0$
For $\mathrm{Fe}_{2} \mathrm{O}_{3} \quad \mu_{\mathrm{B}}=5.9$
sum $=5.9$
83. X of enthanamine was subjected to reaction with $\mathrm{NaNO}_{2} / \mathrm{HCl}$ followed by hydrolysis to liberate N_{2} and HCl . The HCl generated was completely neutralised by 0.2 moles of NaOH . X is \qquad g .
Ans. (9)
Sol.

84. In an atom, total number of electrons having quantum numbers $\mathrm{n}=4,\left|\mathrm{~m}_{1}\right|=1$ and $\mathrm{m}_{\mathrm{s}}=-\frac{1}{2}$ is
Ans. (6)
Sol. $\mathrm{n}=4$

ℓ	m_{ℓ}
0	0
1	$-1,0,+1$
2	$-2,-1,0,+1,+2,+3$

So number of orbital associated with
$\mathrm{n}=4,\left|\mathrm{~m}_{\ell}\right|=1$ are 6
Now each orbital contain one e^{-}with $\mathrm{m}_{\mathrm{s}}=-\frac{1}{2}$
85. Using the given figure, the ratio of R_{f} values of sample A and sample C is $\mathrm{x} \times 10^{-2}$. Value of x is
\qquad -

Fig : Paper chromatography of Samples
Ans. (50)
Sol. R_{f} of $\mathrm{A}=\frac{5}{12.5} \quad \mathrm{R}_{\mathrm{f}}$ of $\mathrm{C}=\frac{10}{12.5}$
Ratio $=\frac{\mathrm{R}_{\mathrm{f}(\mathrm{A})}}{\mathrm{R}_{\mathrm{f}(\mathrm{C})}}=\frac{1}{2}=0.5$ or 50×10^{-2}
86. In the Claisen-Schmidt reaction to prepare 351 g of dibenzalacetone using 87 g of acetone, the amount of benzaldehyde required is \qquad g. (Nearest integer)

Ans. (318)
Sol. Claisen Schmidt reaction

mw of benzaldehyde $=106$
$106 \times 3=318 \mathrm{gm}$. Benzaldehyde is required to give 1.5 mole (or 351 gm) product
87. Consider the following single step reaction in gas phase at constant temperature.
$2 \mathrm{~A}_{(\mathrm{g})}+\mathrm{B}_{(\mathrm{g})} \rightarrow \mathrm{C}_{(\mathrm{g})}$
The initial rate of the reaction is recorded as r_{1} when the reaction starts with 1.5 atm pressure of A and 0.7 atm pressure of B . After some time, the rate r_{2} is recorded when the pressure of C becomes 0.5 atm . The ratio $\mathrm{r}_{1}: \mathrm{r}_{2}$ is \qquad $\times 10^{-1}$. (Nearest integer)

Ans. (315)
Sol. $2 \mathrm{~A}(\mathrm{~g})+\mathrm{B}(\mathrm{g}) \longrightarrow \mathrm{C}(\mathrm{g})$
$\mathrm{r}_{1} \quad 1.5 \mathrm{~atm} \quad 0.7 \mathrm{~atm}$
$\begin{array}{llll}\mathrm{r}_{2} & 0.5 \mathrm{~atm} \quad 0.2 \mathrm{~atm} \quad 0.5 \mathrm{~atm}\end{array}$
$\because \mathrm{r}=\mathrm{K}\left[\mathrm{P}_{\mathrm{A}}\right]^{2}\left[\mathrm{P}_{\mathrm{B}}\right]$
$\mathrm{r}_{1}=\mathrm{K}[1.5]^{2}[0.7]$
$\mathrm{r}_{2}=\mathrm{K}[0.5]^{2}[0.2]$
$\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}=9 \times \frac{7}{2}=31.5=315 \times 10^{-1}$
Ans. 315

OVERSEAS
88. The product © in the following sequence of reactions has \qquad π bonds.

Ans. (4)

Sol. $\mathrm{A}=$

π bonds $=4$
89. Considering acetic acid dissociates in water, its dissociation constant is 6.25×10^{-5}. If 5 mL of acetic acid is dissolved in 1 litre water, the solution will freeze at $-\mathrm{x} \times 10^{-2}{ }^{\circ} \mathrm{C}$, provided pure water freezes at $0^{\circ} \mathrm{C}$.
$\mathrm{x}=$ \qquad . (Nearest integer)

Given : $\left(\mathrm{K}_{\mathrm{f}}\right)_{\text {water }}=1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$.
density of acetic acid is $1.2 \mathrm{~g} \mathrm{~mol}^{-1}$
molar mass of water $=18 \mathrm{~g} \mathrm{~mol}^{-1}$.
molar mass of acetic acid $=60 \mathrm{~g} \mathrm{~mol}^{-1}$.
density of water $=1 \mathrm{~g} \mathrm{~cm}^{-3}$
Acetic acid dissociates as

$$
\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{\oplus}+\mathrm{H}^{\oplus}
$$

Ans. (19)

Sol. Mass of $\mathrm{CH}_{3} \mathrm{COOH}=\mathrm{V} \times \mathrm{d}$
$=5 \mathrm{ml} \times 1.2 \mathrm{~g} / \mathrm{ml}$
$=6 \mathrm{gm}$
$\mathrm{n}_{\mathrm{CH}_{3} \mathrm{COOH}}=\frac{6}{60}=0.1 \mathrm{~mol}$
$\mathrm{m}_{\mathrm{CH}_{3} \mathrm{COOH}} \approx \mathrm{M}_{\mathrm{CH}_{3} \mathrm{COOH}}=\frac{0.1}{1}=0.1 \mathrm{M}$
$\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$
C
$\mathrm{C}-\mathrm{C} \alpha$
$\mathrm{C} \alpha \quad \mathrm{C} \alpha$
$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{C} \alpha^{2}}{1-\alpha}$
$1-\alpha \approx 1 \Rightarrow K_{a}=C \alpha^{2}$
$\alpha=\sqrt{\frac{\mathrm{Ka}}{\mathrm{C}}}=\sqrt{\frac{6.25 \times 10^{-5}}{0.1}}=25 \times 10^{-3}$
V.f. $(\mathrm{i})=1+\alpha(\mathrm{n}-1)=1+\alpha(2-1)=1+\alpha$
$=1+25 \times 10^{-3}=1.025$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{iK} \mathrm{F}_{\mathrm{f}} \mathrm{m}$
$=(1.025)(1.86)(0.1)$
$=0.19$
$=19 \times 10^{-2}$
90. Number of compounds from the following with zero dipole moment is \qquad .

HF, $\mathrm{H}_{2}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{CO}_{2}, \mathrm{NH}_{3}, \mathrm{BF}_{3}, \mathrm{CH}_{4}, \mathrm{CHCl}_{3}, \mathrm{SiF}_{4}$, $\mathrm{H}_{2} \mathrm{O}, \mathrm{BeF}_{2}$
Ans. (6)
Sol. $\mathrm{H}_{2}, \mathrm{CO}_{2}, \mathrm{BF}_{3}, \mathrm{CH}_{4}, \mathrm{SiF}_{4}, \mathrm{BeF}_{2}$ are symm. molecule so dipole moment is zero

