

FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Friday 05th April, 2024)

TIME: 9:00 AM to 12:00 NOON

CHEMISTRY

SECTION-A

- **61.** The **incorrect** postulates of the Dalton's atomic theory are :
 - (A) Atoms of different elements differ in mass.
 - (B) Matter consists of divisible atoms.
 - (C) Compounds are formed when atoms of different element combine in a fixed ratio.
 - (D) All the atoms of given element have different properties including mass.
 - (E) Chemical reactions involve reorganisation of atoms.

Choose the **correct** answer from the options given below:

- (1)(B),(D),(E) only
- (2) (A), (B), (D) only
- (3)(C), (D), (E) only
- (4) (B), (D) only

Ans. (4)

Sol. B, D

62. The following reaction occurs in the Blast furnance where iron ore is reduced to iron metal

$$Fe_2O_{3(s)} + 3CO_{(g)} \Longrightarrow Fe_{(1)} + 3CO_{2(g)}$$

Using the Le-chatelier's principle, predict which one of the following will not disturb the equilibrium.

- (1) Addition of Fe₂O₃
- (2) Addition of CO₂
- (3) Removal of CO
- (4) Removal of CO₂

Ans. (1)

Sol. When solid added no effect on equilibrium.

TEST PAPER WITH SOLUTION

63. Identify compound (Z) in the following reaction sequence.

$$+ \text{NaOH} \xrightarrow{623 \text{ K}} X \xrightarrow{\text{HCl}} Y \xrightarrow{\text{Conc. HNO}_3} Z$$

(1)
$$\stackrel{\text{OH}}{\longmapsto}$$
 $\stackrel{\text{NO}_2}{\longmapsto}$ (2) $\stackrel{\text{OH}}{\longmapsto}$ $\stackrel{\text{NO}_2}{\longmapsto}$

$$(3) \begin{array}{c} OH \\ O_2N \\ NO_2 \end{array} \qquad (4) \begin{array}{c} OH \\ NO_2 \\ NO_2 \end{array}$$

Ans. (3)

Sol.
$$(X)$$
 + NaOH $\xrightarrow{623K}$ (X) (X) \xrightarrow{HCl} (Y) $\xrightarrow{Conc.HNO_3}$ (X) (X) (Y) (Y)

64. Given below are two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R)

Assertion (A): Enthalpy of neutralisation of strong monobasic acid with strong monoacidic base is always –57 kJ mol⁻¹

Reason (R): Enthalpy of neutralisation is the amount of heat liberated when one mole of H⁺ ions furnished by acid combine with one mole of OH ions furnished by base to form one mole of water. In the light of the above statements, choose the **correct** answer from the options given below.

- (1) (A) is true but (R) is false
- (2) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (3) (A) is false but (R) is true
- (4) Both (A) and (R) are true but (R) is **not** the correct explanation of (A)

Ans. (2)

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD

- **Sol.** Enthalpy of neutralization of SA & SB is always –57 kJ / mol because strong monoacid gives one mole of H⁺ and strong mono base gives one mole of OH⁻ which form one mole of water.
- 65. The statement(s) that are **correct** about the species O^{2-} , F^- , Na^+ and Mg^{2+} .
 - (A) All are isoelectronic
 - (B) All have the same nuclear charge
 - (C) O²⁻ has the largest ionic radii
 - (D) Mg²⁺ has the smallest ionic radii

Choose the **most appropriate** answer from the options given below:

- (1) (B), (C) and (D) only
- (2) (A), (B), (C) and (D)
- (3) (C) and (D) only
- (4) (A), (C) and (D) only

Ans. (4)

Sol. O^{-2} F^{-} Na^{+} Mg^{+2} (No. of e⁻) 10 10 10 10 (Ionic radius) $O^{-2} > F^{-} > Na^{+} > Mg^{+2}$ Zeff $O^{-2} < F^{-} < Na^{+} < Mg^{+2}$

- **66.** For the compounds:
 - (A) H₃C-CH₂-O-CH₂-CH₂-CH₃
 - (B) H₃C-CH₂-CH₂-CH₂-CH₃

The increasing order of boiling point is:

Choose the **correct** answer from the options given below:

- (1)(A) < (B) < (C) < (D)
- (2) (B) < (A) < (C) < (D)
- (3) (D) < (C) < (A) < (B)
- (4)(B) < (A) < (D) < (C)

Ans. (2)

Sol. Compounds having same number of carbon atoms follow the boiling point order as:

(Boiling point)_{Hydrogen bonding} >(Boiling point)_{high polarity} > (Boiling point)_{low polarity} > (Boiling point)_{non polar}

67. Given below are two statements:

Statement I: In group 13, the stability of +1 oxidation state increases down the group.

Statement II: The atomic size of gallium is greater than that of aluminium.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

- (1) Statement I is incorrect but Statement II is correct
- (2) Both Statement I and Statement II are correct
- (3) Both **Statement I** and **Statement II** are incorrect
- (4) Statement I is correct but Statement II is incorrect

Ans. (4)

Sol. Statement I: Number of d & f electrons, increases down the group and due to poor shielding of d & f e, stability of lower oxidation states increases down the group

Statement II: The atomic size of aluminium is greater than that of gallium.

- 68. Number of σ and π bonds present in ethylene molecule is respectively:
 - (1) 3 and 1
- (2) 5 and 2
- (3) 4 and 1
- (4) 5 and 1

Ans. (4)

Sol. ethylene is $H \stackrel{\sigma}{\underset{\sigma}{\circ}} C \stackrel{\pi}{\underset{\sigma}{\circ}} C \stackrel{\sigma}{\underset{\sigma}{\circ}} H$, it has 5σ bonds and

 1π bond.

69. Identify 'A' in the following reaction :

$$CH_3$$
 CH_3 CH_3 CH_3 CH_4 CH_4 CH_3 CH_4 CH_3 CH_4 CH_3 CH_4 CH_5 CH_5 CH_5 CH_5 CH_5 CH_5 CH_6 CH_7 CH_7 CH_8 CH_8

(1)
$$CH_3$$
 CH_3 (2) CH_3 CH_3

(3)
$$C=N-NH_2$$
 $C=N-NH_2$ CH_3 $C=N-NH_2$ CH_3

Ans. (2)

Download the new ALLEN app & enroll for Online Programs

$$CH_{3} \xrightarrow{\text{(i) N}_{2}H_{4} \atop \text{(ii) ethylene glycol/KOH}} CH_{3} \xrightarrow{\text{CH}_{3}} - \text{Wolf kishner reduction.}$$

- 70. The reaction at cathode in the cells commonly used in clocks involves.
 - (1) reduction of Mn from +4 to +3
 - (2) oxidation of Mn from +3 to +4
 - (3) reduction of Mn from + 7 to +2
 - (4) oxidation of Mn from +2 to +7

Ans. (1)

Sol. In the cathode reaction manganese (Mn) is reduced from the +4 oxidation state to the +3 state.

71. Which one of the following complexes will exhibit the least paramagnetic behaviour?

[Atomic number, Cr = 24, Mn = 25, Fe = 26, Co = 27]

- (1) $[Co(H_2O)_6]^{2+}$ (2) $[Fe(H_2O)_6]^{2+}$ (3) $[Mn(H_2O)_6]^{2+}$ (4) $[Cr(H_2O)_6]^{2+}$

Ans. (1)

Sol.

	Number of unpaired e	$\mu = \sqrt{n(n+2)} B.M.$
$[Co(H_2O)_6]^{2+}$	3	3.87
$[Fe(H_2O)_6]^{2+}$	4	4.89
$\left[\mathrm{Mn}(\mathrm{H_2O})_6\right]^{2+}$	5	5.92
$[Cr(H_2O)_6]^{2+}$	4	4.89

Least paramagnetic behaviour = $[Co(H_2O)_6]$

72. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

> **Assertion (A):** Cis form of alkene is found to be more polar than the trans form

> Reason (R): Dipole moment of trans isomer of 2-butene is zero.

> In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Both (A) and (R) are true but (R) is NOT the correct explanation of (A)
- (2) (A) is true but (R) is false
- (3) Both (A) and (R) are true and (R) is the correct explanation of (A)
- (4) (A) is false but (R) is true

Ans. (3)

Sol. Dipole moment is a vector quantity and for compound net dipole moment is the vector sum of all dipoles hence dipole moment of cis form is greater than trans form.

$$\begin{array}{cccc} \mu: CH_3 & C = C & CH_3 \\ H & Cis & CH_3 & trans \\ (\mu > 0) & (\mu = 0) \end{array}$$

73. Given below are two statements:

> Statement I: Nitration of benzene involves the following step –

$$\begin{array}{c} H \\ \downarrow \oplus \\ H - \bigodot - NO_2 & \Longrightarrow H_2O + NO_2 \end{array}$$

Statement II: Use of Lewis base promotes the electrophilic substitution of benzene.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are incorrect
- (2) Statement I is correct but Statement II is incorrect
- (3) Both Statement I and Statement II are correct
- (4) Statement I is incorrect but Statement II is correct

Ans. (2)

In nitration of benzene concentrated H₂SO₄ and Sol. HNO₃ is used as reagent which generates electrophile $\overset{\oplus}{NO_2}$ in following steps:

$$H_{2}SO_{4} + HNO_{3} \rightleftharpoons HSO_{4}^{\Theta} + H - O - NO_{2}$$

$$HSO_{4}^{\Theta} + H_{2}O + NO_{2}^{\Theta}$$

$$HSO_{4}^{\Theta} + H_{2}O + NO_{2}^{\Theta}$$

Lewis acids can promote the formation of electrophiles not Lewis base

Download the new ALLEN app & enroll for Online Programs

- The correct order of ligands arranged in increasing field strength.
 - (1) $Cl^- < OH < Br^- < CN^-$
 - (2) $F^- < Br^- < I^- < NH_3$
 - (3) $Br^- < F^- < H_2O < NH_3$
 - (4) H₂O < OH < CN < NH₃
- Ans. (3)
- **Sol.** Experimental order $Br^- < F^- < H_2O < NH_3$
- Which of the following gives a positive test with ninhydrin?
 - (1) Cellulose
- (2) Starch
- (3) Polyvinyl chloride
- (4) Egg albumin

- Ans. (4)
- Sol. Ninhydrin test is a test of amino acids. Egg albumin contains protein which is a natural polymer of amino acids which will show positive ninhydrin test
- **76.** The metal that shows highest and maximum number of oxidation state is:
 - (1) Fe
- (2) Mn
- (3) Ti
- (4) Co

- Ans. (2)
- **Sol.** Mn shows highest oxidation state (Mn⁺⁷) in 3d series metals.
- 77. Ail organic compound has 42.1% carbon, 6.4% hydrogen and remainder is oxygen. If its molecular weight is 342, then its molecular formula is:
 - $(1) C_{11}H_{18}O_{12}$
- $(2) C_{12}H_{20}O_{12}$
- $(3) C_{14}H_{20}O_{10}$

- $C_{12}H_{22}O_{11}$
- Ans. (4)
- **Sol.** only $C_{12}H_{22}O_{11}$ has 42.1% carbon, 6.4% hydrogen & 51.5 percent oxygen.
- **78.** Given below are two statement:

Statement I: Bromination of phenol in solvent with low polarity such as CHCl3 or CS2 requires Lewis acid catalyst.

Statement II: The lewis acid catalyst polarises the bromine to generate Br⁺.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Statement I is true but Statement II is false.
- (2) Both Statement I and Statement II are true
- (3) Both Statement I and Statement II are false.
- (4) Statement I is false but Statement II is true.

Ans. (4)

- **Sol.** Phenol is a highly activated compound which can undergo bromination directly with Bromine without any lewis acid.
- **79.** Molar ionic conductivities of divalent cation and anion are 57 S cm² mol⁻¹ and 73 S cm² mol⁻¹ respectively. The molar conductivity of solution of an electrolyte with the above cation and anion will
 - (1) $65 \text{ S cm}^2 \text{ mol}^{-1}$ (2) $130 \text{ S cm}^2 \text{ mol}^{-1}$
 - (3) $187 \text{ S cm}^2 \text{ mol}^{-1}$ (4) $260 \text{ S cm}^2 \text{ mol}^{-1}$

Ans. (2)

Sol.
$$\Lambda_{\rm C}^{+2} = 57 \,{\rm S \, cm}^2 {\rm mol}^{-1}$$

$$\Lambda_{\rm A}^{+2} = 73 \, {\rm S \, cm}^2 {\rm mol}^{-1}$$

$$\Lambda_{Solution} = \lambda_{C}^{+2} + \Lambda_{A}^{-2}$$

$$= 57 + 73 = 130$$

- The number of neutrons present in the more abundant 80. isotope of boron is 'x'. Amorphous boron upon heating with air forms a product, in which the oxidation state of boron is 'y'. The value of x + y is ...
 - (1) 4

- (3) 3
- (4)9

Ans. (4)

Sol. More abundant isotope = B^{11}

[Number of neutrons = 6]

x = 6

$$B + O_2 \rightarrow B_2O_3$$

Oxidation state of B in $B_2O_3 = +3$

So,
$$y = 3$$

Hence
$$x + y = 9$$

SECTION-B

The value of Rydberg constant (R_H) is 2.18×10^{-18} J. 81. The velocity of electron having mass 9.1×10^{-31} kg in Bohr's first orbit of hydrogen atom $= \dots \times 10^5 \,\mathrm{ms}^{-1}$ (nearest integer)

Ans. (22)

Sol.
$$V = 2.18 \times 10^6 \times \frac{Z}{n}$$

$$=21.8\times10^5\times\frac{1}{1}\approx22\times10^5\,(\text{nearest})$$

Download the new ALLEN app & enroll for Online Programs

82.

In a borax bead test under hot condition, a metal salt (one from the given) is heated at point B of the flame, resulted in green colour salt bead. The spin-only magnetic moment value of the salt is BM (Nearest integer)

[Given atomic number of Cu = 29, Ni = 28, Mn = 25, Fe = 26

Ans. (6)

Sol. Fe⁺³ will give green coloured bead when heated at

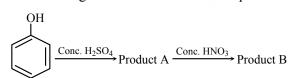
Number of unpaired e^- in $Fe^{+3} = 5$

$$\mu = 5.92$$

Nearest integer = 6

83. The heat of combustion of solid benzoic acid at constant volume is -321.30 kJ at 27°C. The heat of combustion at constant pressure is (-321.30 - xR)kJ, the value of x is

Ans. (150)


Sol.
$$C_6H_5COOH(S) + \frac{15}{2}O_2(g) \rightarrow 7CO_2(g) + 3H_2O(\ell)$$

$$\Delta H = \Delta U + \Delta n_g RT$$

$$= -321.30 - \frac{1}{2} \frac{R}{100} \times 300$$

$$= (-321.30 - 150R) \text{ kJ}$$

84. Consider the given chemical reaction sequence:

Total sum of oxygen atoms in Product A and Product B are

Ans. (14)

Sol. Picric acid is prepared by treating phenol first with concentrated sulphuric acid which converts it to phenol-2,4-disulphonic acid and concentrated nitric acid to get 2, 4, 6 trinitrophenol.

The spin only magnetic moment value of the ion **85.** among Ti²⁺, V²⁺, Co³⁺ and Cr²⁺, that acts as strong oxidising agent in aqueous solution is BM (Near integer).

> (Given atomic numbers: Ti: 22, V: 23, Cr: 24, Co: 27)

Ans. (5)

Strong oxidising agent = Co^{+3} Sol. No. of unpaired e^- in $Co^{+3}[3d^6] = 4$ Hence $\mu = \sqrt{n(n+2)} = \sqrt{24}$ BM

Nearest integer = 5

During Kinetic study of reaction $2A + B \rightarrow C + D$, 86. the following results were obtained:

		A[M]	B[M]	initial rate of formation of D
7	I	0.1	0.1	6.0×10^{-3}
4	II	0.3	0.2	7.2×10^{-2}
	Ш	0.3	0.4	2.88×10^{-1}
(IV	0.4	0.1	2.40×10^{-2}

Based on above data, overall order of the reaction is

Ans. (3)

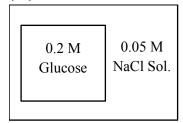
Sol.
$$r = K[A]^x[B]^y$$

 $(I) 6 \times 10^{-3} = K[0.1]^x[0.1]^y$
 $(IV) 2.4 \times 10^{-2} = K[0.4]^x[0.1]^y$
 $(IV)/(I)$
 $4 = (4)^x$
 $x = 1$
 $r = K[A]^x[B]^y$
 $(III) 2.88 \times 10^{-1} = K[0.3]^x[0.4]^y$
 $(II) 7.2 \times 10^{-2} = K[0.3]^x[0.2]^y$

$$4 = 2^{y}$$

$$y = 2$$

Overall order =
$$x + y = 1 + 2 = 3$$


Download the new ALLEN app & enroll for Online Programs

87. An artificial cell is made by encapsulating 0.2 M glucose solution within a semipermeable membrane. The osmotic pressure developed when the artificial cell is placed within a 0.05 M solution of NaCl at 300 K is _____ × 10⁻¹ bar. (Nearest Integer)

[Given: $R = 0.083 \text{ L bar mol}^{-1} \text{ K}^{-1}$] Assume complete dissociation of NaCl

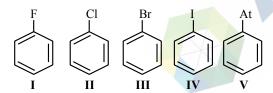
Ans. (25)

Sol.

$$NaCl \longrightarrow Na^+ + Cl^-$$

Total
$$C_1 = 0.05 + 0.05 = 0.1 \text{ M (NaCl)}$$

$$C_2 = 0.2 \text{ M (glucose)}$$


$$\pi = (C_2 - C_1) RT$$

$$=(0.2-0.1)\times0.083\times300$$

$$= 2.49 \text{ bar}$$

$$= 24.9 \times 10^{-1}$$
bar

88. The number of halobenzenes from the following that can be prepared by Sandmeyer's reaction is

Ans. (2)

- **Sol.** In Sandmayer reaction only bromobenzene & chlorobenzene are prepared
- **89.** In the lewis dot structure for NO₂⁻, total number of valence electrons around nitrogen is

Ans. (8)

Sol.

Number of valence e⁻ around N-atom = 8

90. 9.3 g of pure aniline is treated with bromine water at room temperature to give a white precipitate of the product 'P'. The mass of product 'P' obtained is 26.4 g. The percentage yield is%.

Ans. (80)

Sol.
$$NH_2$$

$$Br \longrightarrow Br$$

$$Br$$
(white ppt)

93 g of aniline produces 330 g of 2, 4, 6-tribromoaniline. Hence 9.3 g of aniline should produce 33g of 2, 4, 6-tribromoaniline. Hence

percentage yield
$$\frac{26.4 \times 100}{33} = 80\%$$

Download the new ALLEN app & enroll for Online Programs

CLICK HERE TO DOWNLOAD