

Ans. (3)

CLICK HERE TO DOWNLOAD

ALLEN

- **70.** The incorrect statement regarding the geometrical isomers of 2-butene is:
 - (1) cis-2-butene and trans-2-butene are not interconvertible at room temperature.
 - (2) cis-2-butene has less dipole moment than trans-2-butene.
 - (3) trans-2-butene is more stable than cis-2-butene.
 - (4) cis-2-butene and trans-2-butene are stereoisomers.

Ans. (2)

Sol.

 CH_{3} C = C H Cis-but-2-ene (Polar) H Cis-but-2-ene (Non Polar)

Cis-but-2-ene has higher Dipole moment than trans-but-2-ene.

71. Given below are two statements:

Statement I: PF_5 and BrF_5 both exhibit sp^3d hybridisation.

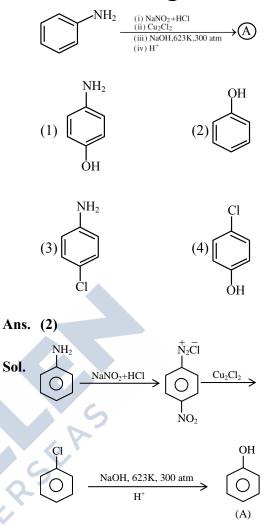
Statement II: Both SF_6 and $[Co(NH_3)_6]^{3+}$ exhibit sp^3d^2 hybridisation.

In the light of the above statements, choose the **correct** answer from the options given below:

- (1) Statement I is true but Statement II is false
- (2) Both Statement I and Statement II are true
- (3) Both Statement I and Statement II are false
- (4) Statement I is false but Statement II is true.

Ans. (3)

Sol.


	Hybridisat	tion	Hybridisation			
PF_5	sp ³ d	SF ₆	$sp^{3}d^{2}$			
BrF ₅	$sp^{3}d^{2}$	$[Co(NH_3)_6]^{+3}$	d ² sp ³			
Both Statement (1) and (2) are false.						
77	The number	of iong from the fall	wing that are			

72. The number of ions from the following that are expected to behave as oxidising agent is: Sn^{4+} , Sn^{2+} , Pb^{2+} , Tl^{3+} , Pb^{4+} , Tl^+ (1) 3 (2) 4

(1) 5	(2) न
(3) 1	(4) 2

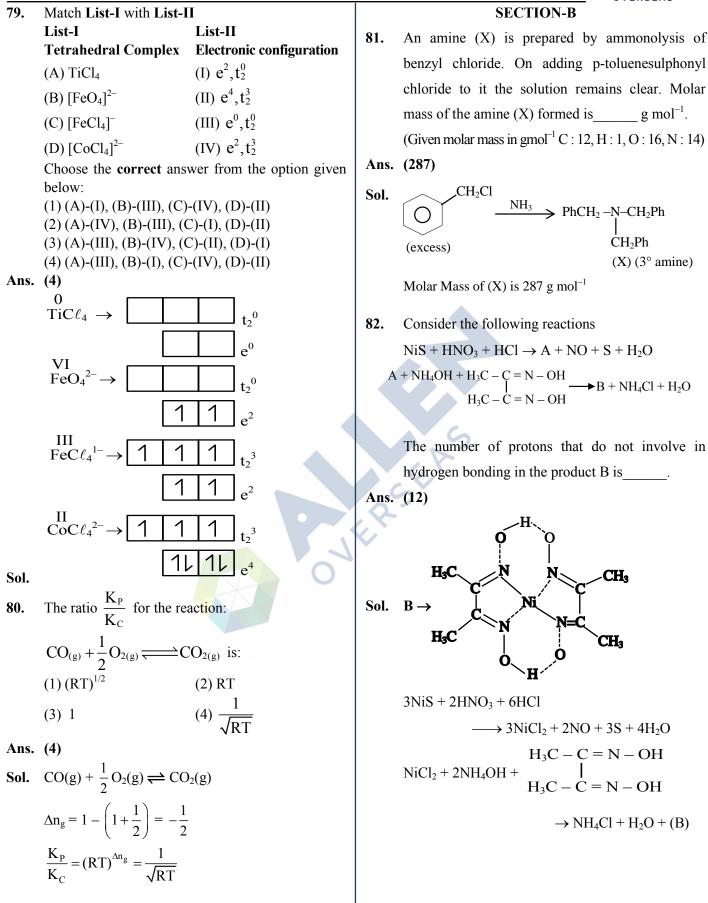
- Ans. (4)
- **Sol.** Due to inert pair effect; $T\ell^{+3}$ and Pb^{+4} can behave as oxidising agents.

73. Identify the product (A) in the following reaction.

- 74. The correct statements among the following, for a "chromatography" purification method is:
 - (1) Organic compounds run faster than solvent in the thin layer chromatographic plate.
 - (2) Non-polar compounds are retained at top and polar compounds come down in column chromatography.
 - (3) $R_{\rm f}$ of a polar compound is smaller than that of a non-polar compound.
 - (4) R_f is an integral value.

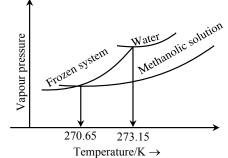
Ans. (3)

Sol. Non polar compounds are having higher value of $R_{\rm f}$ than polar compound.



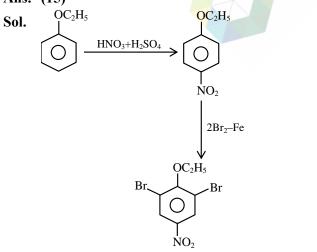
٩	ALLEN OVERSEAS

	OVERSEAS			· · ·	
75.	Evaluate the following statements related to group		77.	Consider the given reaction, identify the major	
14 elements for their correctness.(A)Covalent radius decreases down the group		product P. $CH_{3} - COOH \xrightarrow{(i) \text{ LiAlH}_{4} (ii) \text{ PCC } (iii) \text{ HCN/OH}}_{(iv) \text{ H}_{2}O/OH,\Delta} "P"$			
					from C to Pb in a regular manner. (B) Electronegativity decreases from C to Pb down
	(1) 120/011,2				
the group gradually.				$(1) \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{CH}_2 - \operatorname{OH}$	
		ce of C is 4 whereas other	Q		
elements can expand their covalence due to			$(2) CH_3 - CH_2 - C - NH_2$		
	presence of d orbital			$(2) \operatorname{CH}_3 - \operatorname{CH}_2 - \operatorname{C} - \operatorname{HH}_2$	
(D) Heavier elements do not form $p\pi$ - $p\pi$ bonds.					
(E) Carbon can exhibit negative oxidation states.				O II	
Choose the correct answer from the options given below:				$(3) CH_3 - C - CH_2CH_3$	
	(1) (C), (D) and (E) Onl	v(2)(A) and (B) Only			
	(1) (C), (D) and (D) Onl (3) (A), (B) and (C) Onl	• • • • • • • •		ОН	
Ans.		-) () () ()			
Sol.	(A) Down the group; rad	dius increases		(4) CH ₃ — CH — COOH	
	(B) EN does not decreas	se gradually from C to Pb.			
(C) Correct.		Ans.	Ans. (4)		
	(D) Correct.		Sol.	$CH_3 \longrightarrow COOH \xrightarrow{\text{LiAlH}_4} CH_3 - CH_2 - OH$	
	(E) Range of oxidation	state of carbon ; -4 to +4	501.		
76.	Match List-I with the L	ist-II			
	List-I	List-II		Ц СH ₃ -С-Н	
	Reaction	Type of redox reaction			
(A) N	$V_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$	(I) Decomposition		HCN/OH	
(B) 2Pb(NO ₃) _{2(s)} (II) Displacement			6	ОН	
$\rightarrow 2PbO_{(s)} + 4NO_{2(g)} + O_{2(g)}$			\mathbf{V}	CH₃—CH	
	$Na_{(s)} + 2H_2O_{(l)}$	(III) Disproportionation		H H	
	$\rightarrow 2 \text{NaOH}_{(aq.)} + \text{H}_{2(g)}$			$H_2O/O\overline{H}, \Delta$	
(D) $2NO_{2(g)} + 2^{-}OH_{(aq.)}$ (IV) Combination					
$\rightarrow NO_{2(aq.)}^{-} + NO_{3(aq.)}^{-} + H_2O_{(1)}^{-}$				CH ₃ —CH—COOH	
Choose the correct answer from the options given				 ОН	
below:					
	(1) (A)-(I), (B)-(II), (C)	-(III), (D)-(IV)	78.	The correct IUPAC name of $[PtBr_2(PMe_3)_2]$ is:	
(2) (A)-(III), (B)-(II), (C)-(I), (D)-(IV)				(1) bis(trimethylphosphine)dibromoplatinum(II)	
(3) (A)-(II), (B)-(III), (C)-(IV), (D)-(I)				(2) bis[bromo(trimethylphosphine)]platinum(II)	
(4) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)				(3) dibromobis(trimethylphosphine)platinum(II)	
Ans. (4)			(4) dibromodi(trimethylphosphine)platinum(II)		
Sol. $A \rightarrow (IV)$		Ans.	(3)		
Sol. $A \rightarrow (IV)$ $B \rightarrow (I)$		Sol.	Dibromo bis(trimethylphosphine) platinum (II)		
			1		
	$C \rightarrow (II)$ $D \rightarrow (III)$				


ALLEN OVERSEAS

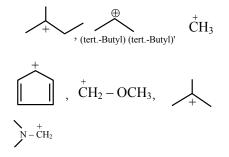
CLICK HERE TO DOWNLOAD

83. When 'x' $\times 10^{-2}$ mL methanol (molar mass = 32 g; density = 0.792 g/cm³) is added to 100 mL water (density = 1 g/cm³), the following diagram is obtained.



x =.....(nearest integer) [Given: Molal freezing point depression constant of water at 273.15 K is 1.86 K kg mol⁻¹]

- Ans. (543)


The ratio of number of oxygen atoms to bromine atoms in the product Q is $\times 10^{-1}$.

Ans. (15)

85. Number of carbocation from the following that are

not stabilized by hyperconjugation is......

Ans. (5)

Sol.
$$\rightarrow$$
 $\stackrel{+}{\sim} \stackrel{-}{\leftarrow}$
 $\stackrel{+}{\leftarrow} H_3 \qquad \stackrel{+}{\frown} \qquad \stackrel{+}{\leftarrow} H_2 - O - CH_3$
 $\searrow N - \stackrel{+}{\leftarrow} H_2$

86. For the reaction at 298 K, $2A + B \rightarrow C$. ΔH = 400 kJ mol⁻¹ and $\Delta S = 0.2$ kJ mol⁻¹ K⁻¹. The reaction will become spontaneous above_____K.

Ans. (2000)

Sol.
$$\Delta G = 0$$

$$T = \frac{\Delta H}{\Delta S} = \frac{400}{0.2} = 2000 \text{ K}$$

87. Total number of species from the following with central atom utilising 2p² hybrid orbitals for bonding is.....

NH₃, SO₂, SiO₂, BeCl₂, C₂H₂, C₂H₄, BCl₃, HCHO,

CLICK HERE TO DOWNLOAD

 C_6H_6 , BF_3 , $C_2H_4Cl_2$

Ans. (6)

Sol. Central atom utilising sp² hybrid orbitals

SO₂, C₂H₄, BCl₃, HCHO, C₆H₆, BF₃

Consider the two different first order reactions For hydrogen atom, energy of an electron in first 88. 89. given below excited state is -3.4 eV, K.E. of the same electron $A + B \rightarrow C$ (Reaction 1) $P \rightarrow Q$ (Reaction 2) of hydrogen atom is x eV. Value of x is The ratio of the half life of Reaction 1 : Reaction 2 $\times 10^{-1}$ eV. (Nearest integer) is 5 : 2. If t_1 and t_2 represent the time taken to complete $\frac{2}{3}^{rd}$ and $\frac{4}{5}^{th}$ of Reaction 1 and Ans. (34) Reaction 2, respectively, then the value of the ratio $t_1 : t_2$ is $\times 10^{-1}$ (nearest integer). [Given: $log_{10}(3) = 0.477$ and $log_{10}(5) = 0.699$] Among VO_2^+ , MnO_4^- and $Cr_2O_7^{2-}$, the spin-only 90. magnetic moment value of the species with least Ans. (17) oxidising ability is.....BM (Nearest **Sol.** $\frac{(t_{1/2})_{I}}{(t_{1/2})_{II}} = \frac{K_2}{K_1} = \frac{5}{2}$ integer). (Given atomic member V = 23, Mn = 25, Cr = 24) :. $K_1 t_1 = \ell n \frac{1}{1 - \frac{2}{3}} = \ell n 3$ Ans. (0) For 3d transition series; Sol. $K_2 t_2 = \ell n \frac{1}{1 - \frac{4}{5}} = \ell n 5$ Oxidising power : $V^{+5} < Cr^{+6} < Mn^{+7}$ V^{+5} : [Ar] $4s^0 3d^0$ $\Rightarrow \frac{\mathrm{K}_{1}}{\mathrm{K}_{2}} \times \frac{\mathrm{t}_{1}}{\mathrm{t}_{2}} = \frac{0.477}{0.699}$ Number of unpaired electron = 0 $\Rightarrow \frac{t_1}{t_2} = \frac{0.477}{0.699} \times \frac{5}{2} = 1.7 = 17 \times 10^{-1}$ NERSER

