

Final JEE-Main Exam April, 2024/08-04-2024/Evening Session

OVERSEAS	4h I :a4 II		(0	Matah 1		- T	,	
67. Match List-I wi	th List-II. st-I	List-II	68.	Match List-I with List-II.		11.		
	ctions)	(Products)		List-I		List-II		
NH ₂	lionsy	OH			(Test)		dentification)	
l -		ј сно		(A) Ba	yer's test	(I)	Phenol	
(A) (i) (i) (i)	$\xrightarrow{\text{NaNO}_2 + \text{HCl}}_{\text{H}_2\text{O}, \text{ warm}}$	(I)		. ,	ric ammonium rate test	(II)	Aldehyde	
OH I		OH I		(C) Ph	thalein dye test	(III)	Alcoholic-OH group	
(B) H_2	$\xrightarrow{\operatorname{Cr}_2\operatorname{O}_7}$	(II)		· /	hiff's test the correct ans ³	, í	Unsaturation om the options given	
ОН Д				below :				
(C) $(i) CH$	HCl ₃ +aq NaOH			(1) (A)-(III), (B)-(I), (C)-(IV), (D)-(II) (2) (A) (II) (B) (III) (C) (IV) (D) (I)				
	+			(2) (A)-(II), (B)-(III), (C)-(IV), (D)-(I) (2) (A) (ID) (D) (C) (ID) (D) (IU)				
ОН		0		(3) (A)-(IV), (B)-(I), (C)-(II), (D)-(III)				
1		Ŭ		(4) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)				
	NaOH	(IV)	Ans.	(4)				
	CO_2		Sol.	(A) Bayer's test \rightarrow Unsaturation				
(11)	\sim (iii) H ⁺ []			(B) Ceric ammonium nitrate test \rightarrow Alcoholic-OH g				
Choose the corr	rect answer fron	n the options given		(C) Phthalein dye test \rightarrow Phenol				
below :		1 0	(D) Schiff's test \rightarrow Aldehyde					
(1) (A)-(III), (B))-(II), (C)-(I), (D)-(IV)	69.	69. Identify the incorrect statements about group 15				
(2) (A)-(IV), (B))-(II), (C)-(III), (D)-(I)	elements :					
(3) (A)-(I), (B)-((A) Dinitrogen is a diatomic gas which acts like an inert gas at room temperature.					
(4) (A)-(II), (B)-	-(IV), (C)-(I), (D	9)-(III)						
	Ans. (4)		$\mathbf{\nabla}$	(B) The common oxidation states of these				
NH ₂ OH		elements are -3 , $+3$ and $+5$.				5.		
	Sol. (i) NaNO ₂ + HCl (ii) H ₂ O, warm			(C) Nitrogen has unique ability to form $p\pi$ - $p\pi$ multiple bonds.				
ОН О			(D) The stability of +5 oxidation states incre			tion states increases		
\downarrow	L L				vn the group.	011144		
$\boxed{1}$ $\boxed{\frac{Na_2Cr_2O_7}{U_1CO_2}}$	$\boxed{\begin{array}{c} \hline \\ \hline $			(E) Nitrogen shows a maximum covalency of 6.				
H_2SO_4				÷		om the options given		
	0			below.	the correct and		sin the options given	
OH	OH	СНО			(B), (D) only	(2)()	A), (C), (E) only	
(i) CHCl ₃ +aq NaOH					(D), (E) only		D) and (E) only	
$(ii) H^+$			Ans.		(2), (2) only	(.)(-	2) with (2) only	
			Sol.					
OH OH ↓ ↓ ÇOOH				more stable.				
$(i) \text{ NaOH} \\ (ii) \text{ CO}_2 \\ (iii) \text{ H}^+ $				 (E) Nitrogen belongs to 2nd period and cannot expand its octet. 				
	Dow	nload the i	new	/ ALL	EN app			
		nroll for Or					CLICK HERE TO DOWNLOAD	

ALLEN

& enroll for Online Programs

			OVERSEAS
70.	IUPAC name of following hydrocarbon (X) is :	Sol.	Buffer solution is a mixture of either weak acid /
	$CH_3-CH-CH_2-CH_2-CH-CH-CH_2-CH_3$		weak base and its respective conjugate.
	$\begin{array}{ccc} I & I & I \\ CH_3 & (X) & CH_3 & CH_3 \end{array}$		Blood is a buffer solution of carbonic acid H ₂ CO ₃
			and bicarbonate HCO_3^-
	(1) 2-Ethyl-3,6-dimethylheptane		Statement 1 is false but Statement II is true.
	(2) 2-Ethyl-2,6-diethylheptane	73.	The correct sequence of acidic strength of the
	(3) 2,5,6-Trimethyloctane		following aliphatic acids in their decreasing order
	(4) 3,4,7-Trimethyloctane		is :
Ans.	(3)		CH ₃ CH ₂ COOH, CH ₃ COOH, CH ₃ CH ₂ CH ₂ COOH,
	1 2 3 4 5 6 7 8		HCOOH
Sol.	$\boxed{CH_3 - CH - CH_2 - CH_2 - CH - CH - CH_2 - CH_3}$		(1) $HCOOH > CH_3COOH > CH_3CH_2COOH > CH_3CH_2CH_2COOH$
	CH ₃ CH ₃ CH ₃		(2) $HCOOH > CH_3CH_2CH_2COOH >$
	2.5 (Trimethylactor		$CH_3CH_2COOH > CH_3COOH$
	2,5,6-Trimethyloctane		(3) $CH_3CH_2CH_2COOH > CH_3CH_2COOH >$
71.	The equilibrium $Cr_2O_7^{2-} \rightleftharpoons 2CrO_4^{2-}$ is shifted to		CH ₃ COOH > HCOOH
	the right in :		(4) $CH_3COOH > CH_3CH_2COOH >$
	(1) an acidic medium	Ans.	$CH_3CH_2CH_2COOH > HCOOH$
	(2) a basic medium(3) a weakly acidic medium	Sol.	CH ₃ CH ₂ COOH, CH ₃ COOH, CH ₃ CH ₂ CH ₂ COOH,
	(4) a neutral medium		НСООН
Ans.			The correct order is :
Sal	$\operatorname{Cr}_2\operatorname{O}_7^{2-} \xrightarrow{\operatorname{OH}^-} 2\operatorname{Cr}\operatorname{O}_4^{2-}$		HCOOH > CH ₃ COOH > CH ₃ CH ₂ COOH >
			CH ₃ CH ₂ CH ₂ COOH
72.	Given below are two statements :	74.	Given below are two statements : Statement (I) : All the following compounds react
	Statement (I) : A Buffer solution is the mixture of	0	with p-toluenesulfonyl chloride.
	a salt and an acid or a base mixed in any particular		$C_6H_5NH_2$ (C_6H_5) ₂ NH (C_6H_5) ₃ N
			Statement (II) : Their products in the above
	quantities.		reaction are soluble in aqueous NaOH.
	Statement (II) : Blood is naturally occurring		In the light of the above statements, choose the correct answer from the options given below.
	buffer solution whose pH is maintained by		(1) Both Statement I and Statement II is false
	H_2CO_3 / HCO_3^{\odot} concentrations.		(2) Statement I is true but Statement II is false
			(3) Statement I is false but Statement II is true
	In the light of the above statements, choose the		(4) Both Statement I and Statement II is true
	correct answer from the options given below.	Ans. Sol.	(1) Hinsberg test given by 1° amine only.
	(1) Statement I is false but Statement II is true	75.	The emf of cell T1 $\left \begin{array}{c} T1^{+} \\ (0.001M) \end{array} \right \left \begin{array}{c} Cu^{2+} \\ (0.01M) \end{array} \right Cu$ is 0.83 V at
	(2) Both Statement I and Statement II is true		298 K. It could be increased by :
	(3) Both Statement I and Statement II is false		(1) increasing concentration of $T1^+$ ions
	(4) Statement I is true but Statement II is false		 (2) increasing concentration of both T1⁺ and Cu²⁺ ions (3) decreasing concentration of both T1⁺ and Cu²⁺ ions
Ans.	(1)		(4) increasing concentration of Cu^{2+} ions
	Download the r	new	

3

& enroll for Online Programs

Sol.

Anodic Reaction

Reaction $\begin{bmatrix} T\ell_{(s)} \rightarrow T\ell^{+}_{(aq)} + e^{-} \end{bmatrix} 2$ Reaction $Cu^{+2}_{(aq)} + 2e^{-} \rightarrow Cu_{(s)}$

 $\frac{\text{Cathodic Reaction}}{\text{Overall Redox Reaction}} \frac{\text{Cu}^{+2}_{(aq)} + 2e^{-} \rightarrow \text{Cu}_{(s)}}{2T\ell_{(s)}^{+} + \text{Cu}^{+2}_{(aq)} \rightarrow 2T\ell_{(aq)}^{+} + \text{Cu}_{(s)}}$

$$\mathbf{E}_{cell} = \mathbf{E}_{cell}^{o} - \frac{0.0591}{2} \log \frac{\left[\mathrm{T}\ell^{+} \right]^{2}}{\left[\mathrm{Cu}^{+2} \right]}$$

 E_{cell} increases by increasing concentration of $[Cu^{+2}]$ ions.

- **76.** Identify the correct statements about p-block elements and their compounds.
 - (A) Non metals have higher electronegativity than metals.
 - (B) Non metals have lower ionisation enthalpy than metals.
 - (C) Compounds formed between highly reactive nonmetals and highly reactive metals are generally ionic.
 - (D) The non-metal oxides are generally basic in nature.
 - (E) The metal oxides are generally acidic or neutral in nature.
 - (1) (D) and (E) only (2) (A) and (C) only
 - (3) (B) and (E) only (4) (B) and (D) only

Ans. (2)

Sol. As electronegativity increases non-metallic nature increases.

Along the period ionisation energy increases.

High electronegativity difference results in ionic bond formation.

Oxides of metals are generally basic and that of non-metals are acidic in nature.

77. Given below are two statements :

Statement (I) : Kjeldahl method is applicable to estimate nitrogen in pyridine.

Statement (II) : The nitrogen present in pyridine can easily be converted into ammonium sulphate in Kjeldahl method.

In the light of the above statements, choose the **correct** answer from the options given below.

- (1) Both Statement I and Statement II is false
- (2) Statement I is false but Statement II is true
- (3) Both Statement I and Statement II is true
- (4) Statement I is true but Statement II is false

Ans. (1)

Sol. Nitrogen present in pyridine can not be estimated by Kjeldahl method as the nitrogen present in pyridine can not be easily converted into ammonium sulphate.

78. The reaction ;

$$\frac{1}{2}H_{2(g)} + AgCl_{(s)} \rightarrow H^+_{(aq)} + Cl^-_{(aq)} + Ag_{(s)}$$

occurs in which of the following galvanic cell :

- (1) $Pt|H_{2(g)}|HCl_{(soln.)}|AgCl_{(s)}|Ag$
- (2) $Pt|H_{2(g)}|HCl_{(soln.)}|AgNO_{3(aq)}|Ag$
- (3) $Pt|H_{2(g)}|KCl_{(soln.)}|AgCl_{(s)}|Ag$
- (4) $Ag|AgCl_{(s)}|KCl_{(soln.)}|AgNO_{3(aq.)}|Ag$

Ans. (3)

Sol. Anodic half cell

Gas – gas ion electrode

$$\frac{1}{2}H_{2(g)} \rightarrow H^{+}_{(aq)} + e^{\frac{1}{2}}$$

Final JEE-Main Exam April, 2024/08-04-2024/Evening Session

	Final JEE-Main Exam April, 2024/08-04-2024	8-04-2024/Evening Session						
	Cathodic Reaction	80.	Mate	ch List-I with List-	II.			
	Metal-metal insoluble salt anion electrode			List-I		List-II		
	$Ag^{+}_{(aq)} + e^{-} \rightarrow Ag_{(s)}$			(Complex ion)	(Spi	n only magnetic		
	$AgCl_{(s)} \rightleftharpoons Ag^{+}_{(aq)} + Cl^{-}_{(aq)}$				mo	oment in B.M.)		
			(A)	$[Cr(NH_3)_6]^{3+}$	(I)	4.90		
	$\operatorname{AgCl}_{(s)} + e^{-} \rightarrow \operatorname{Ag}_{(s)} + \operatorname{Cl}_{(aq)}^{-}$		(B)	$[NiCl_4]^{2-}$	(II)	3.87		
	Overall redox reaction		(C)	$[CoF_6]^{3-}$	(III)	0.0		
	$\frac{1}{2}\mathrm{H}_{2(g)} + \mathrm{AgCl}_{(s)} \rightarrow \mathrm{H}^{+}_{(aq)} + \mathrm{Cl}^{-}_{(aq)} + \mathrm{Ag}_{(s)}$		(D)	$\left[Ni(CN)_4\right]^{2-}$	(IV)	2.83		
	Cell Representation	Choose the correct answer from the options give below : (1) (A)-(I), (B)-(IV), (C)-(II), (D)-(III)						
	$Pt \boldsymbol{H}_{2(g)} \boldsymbol{kCl}_{(sol)} \boldsymbol{AgCl}_{(s)} \boldsymbol{Ag}$							
79.	Given below are two statements :		(2) (2	(2) (A)-(IV), (B)-(III), (C)-(I), (D)-(II)				
	 Statement (I): Fusion of MnO₂ with KOH and an oxidising agent gives dark green K₂MnO₄. Statement (II): Manganate ion on electrolytic 		(3) (A)-(II), (B)-(IV), (C)-(I), (D)-(III) (4) (A)-(II), (B)-(III), (C)-(I), (D)-(IV)					
	oxidation in alkaline medium gives permanganate	Ans. (3)						
	ion.	Sol.		$Cr(NH_3)_6]^{3+}$				
	In the light of the above statements, choose the		Cr^{3+} : $\operatorname{3d}^3$					
	 correct answer from the options given below. (1) Both Statement I and Statement II is true (2) Both Statement I and Statement II is false (3) Statement I is true but Statement II is false (4) Statement I is false but Statement II is true 		n = 3 (unpaired electrons)					
			$\mu \simeq 3.87 \text{ B.M. (II)}$					
			(B) $[NiCl_4]^{2-}$					
				$Ni^{2+}: 3d^{8}$				
				n=2				
Ans.	(1)		-	$\iota \simeq 2.83 \text{ B.M. (IV)}$				
Sol.	$MnO_2 + 4KOH + O_2 \xrightarrow{fused} 2K_2MnO_4 + 2H_2O$	(C) $[CoF_6]^{3-}$ Co ³⁺ : 3d ⁶						
501								
	Dark green Electrolytic oxidation in alkaline medium : At anode :		n = 4					
			$\mu \simeq 4.90 \text{ B.M. (I)}$ (D) [Ni(CN) ₄] ²⁻					
			$(D) [Ni(CN)_4]$ Ni ²⁺ : 3d ⁸					
				n = 0				
	$MnO_4^{2-} \rightarrow MnO_4^{-} + e^{-}$			$\mu = 0$ B.M. (III)				
			F	~ /				

SECTION-B

81. $\Delta_{vap} H^{\odot}$ for water is +40.49 kJ mol⁻¹ at 1 bar and 100°C. Change in internal energy for this vapourisation under same condition is _____ kJ mol⁻¹. (Integer answer) (Given R = 8.3 JK⁻¹ mol⁻¹)

Ans. (38)

Sol. $H_2O(\ell) \rightleftharpoons H_2O(g)$ $\Delta H_{vap}^0 = 40.79 \text{ kJ} / \text{ mole}$ $\Delta H_{vap}^0 = \Delta U_{vap}^0 + \Delta n_g RT$ $40.79 = \Delta U_{vap}^0 + \frac{1 \times 8.3 \times 373.15}{1000}$ $\Delta U_{vap}^0 = 40.79 - 3.0971$ = 37.6929 $\Delta U_{vap}^0 \approx 38$

82. Number of molecules having bond order 2 from the following molecule is _____.

C₂, O₂, Be₂, Li₂, Ne₂, N₂, He₂

Ans. (2)

Sol. C₂

$$(12e^{-}): \sigma 1s^{2}, \sigma * 1s^{2}, \sigma 2s^{2}, \sigma * 2s^{2} \left[\pi 2p_{x}^{2} = \pi 2p_{y}^{2} \right]$$

B.O. = $\frac{8-4}{2} = 2$
O₂
(16e^{-}): $\sigma 1s^{2}, \sigma * 1s^{2}, \sigma 2s^{2}, \sigma * 2s^{2}, \sigma 2pz^{2}$

$$\left[\pi 2p_x^2 = \pi 2p_y^2\right] \left[\pi^* 2p_x^1 = \pi^* 2p_y^1\right]$$

B.O. = $\frac{10-6}{2} = 2$

Be₂

$$(8e^{-})$$
: $\sigma 1s^2, \sigma * 1s^2, \sigma 2s^2, \sigma * 2s^2$

B.O. =
$$\frac{4-4}{2} = 0$$

 Li_2

 $(6e^{-})$: $\sigma 1s^2, \sigma * 1s^2, \sigma 2s^2$

B.O.
$$= \frac{4-2}{2} = 1$$

Ne₂
(20e⁻) : $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2, \sigma 2pz^2$
 $\left[\pi 2p_x^2 = \pi 2p_y^2\right] \left[\pi^* 2p_x^2 = \pi^* 2p_y^2\right] \sigma^* 2p_z^2$
B.O. $= \frac{10-10}{2} = 0$
N₂
(14e⁻) : $\sigma 1s^2, \sigma^* 1s^2, \sigma 2s^2, \sigma^* 2s^2 \left[\pi 2p_x^2 = \pi 2p_y^2\right] \sigma 2p_z^2$
B.O. $= \frac{10-4}{2} = 6$
He₂
(4e⁻) : $\sigma 1s^2, \sigma^* 1s^2$
B.O. $= \frac{2-2}{2} = 0$
Total number of optically active compounds from
the following is _____.
CH₃ ____OH OH _____CH₃ - CH₂ - CH₂ - CH₂ - OH,

$$\begin{array}{cccc} CH_{3} & OH OH \\ I - C - OH \\ I - C - OH \\ CH_{3} & OH OH \\ OH & CH_{3} - CH_{2} - CH_{2} - CH_{2} - OH, \\ OH & CH_{3} - CH_{2} - CH - CH_{3} \\ OH & Cl \\ CH_{3} - CH_{2} - CH_{2} - CH_{2} - Cl, \\ (CH_{3})_{2}CH - CH_{2} - CH_{2} - Cl, \\ (CH_{3})_{2}CH - CH_{2} - CH_{2} - Cl \end{array}$$

Ans. (1)

83.

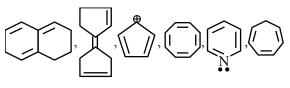
F F

Sol.
$$CH_3 - CH_2 - CH - CH_3$$

- **84.** The total number of carbon atoms present in tyrosine, an amino acid, is _____.
- Ans. (9)
- Sol. Tyrosine

HC NH_2

Number of carbon atoms = 9


CLICK HERE TO DOWNLOAD

Final JEE-Main Exam April, 2024/08-04-2024/Evening Session

- 85. Two moles of benzaldehyde and one mole of acetone under alkaline conditions using aqueous NaOH after heating gives x as the major product. The number of π bonds in the product x is
- Ans. (9)

Sol.
$$\begin{array}{c} Ph \\ H \\ C = O + CH_{3} - C - CH_{3} + O = C \\ H \\ NaOH/\Delta \\ Ph \\ H \\ C = CH - C - CH = C \\ H \end{array} \begin{array}{c} Ph \\ Aldol \\ condensation \\ reaction \end{array}$$

86. Total number of aromatic compounds among the following compounds is _____.

Ans. (1)

- Sol.
- 87. Molality of an aqueous solution of urea is 4.44 m. Mole fraction of urea in solution is $x \times 10^{-3}$. Value of x is _____. (integer answer)
- Ans. (74)
- **Sol.** Molality of urea is 4.44 m, that means 4.44 moles of urea present in 1000 gm of water.

$$\therefore X_{urea} = \frac{4.44}{4.44 + \frac{1000}{18}}$$

$$= 0.0740$$

 74×10^{-3}

X = 74

88. Total number of unpaired electrons in the complex

ion
$$[Co(NH_3)_6]^{3+}$$
 and $[NiCl_4]^{2-}$ is

Ans. (2)

Sol.
$$\operatorname{Co}^{+3}$$
: $\operatorname{3d}^{6}$ $\operatorname{t}_{2g}^{2,2,2}$ $\operatorname{e}_{g}^{0,0}$
Unpaired $\operatorname{e}^{-}=0$
Ni^{+2}: $\operatorname{3d}^{8}$ $\operatorname{e}^{2,2}$ $\operatorname{t}_{2}^{2,1,1}$

Unpaired $e^-=2$

89. Wavenumber for a radiation having 5800 Å wavelength is $x \times 10$ cm⁻¹. The value of x is

Ans. (1724)

Sol.
$$\overline{v}$$
 (wave no.) = $\frac{1}{\lambda} = \frac{1}{5800 \times 10^{-8} \text{ cm}} = 17241$

OR

$$1724 \times 10 \,\mathrm{cm}^{-1} \Rightarrow x = 1724$$

90. A solution is prepared by adding 1 mole ethyl alcohol in 9 mole water. The mass percent of solute in the solution is _____ (Integer Answer) (Given : Molar mass in g mol⁻¹ Ethyl alcohol : 46, water : 18)

Ans. (22)

Sol. Mass percent of Alcohol

$$= \frac{\text{Mass of ethyl alcohol}}{\text{Total mass of solution}} \times 100$$

$$= \frac{1 \times 46}{1 \times 46 + 9 \times 18} \times 100 = \frac{4600}{208}$$

CLICK HERE TO

$$= 22.11$$
 Or 22