MATHEMATICS

SECTION-A

1. Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be a function given by $f(x)= \begin{cases}\frac{1-\cos 2 x}{x^{2}} & , x<0 \\ \alpha & , x=0, \text { where } \alpha, \beta \in R \text {. If } \\ \frac{\beta \sqrt{1-\cos x}}{x} & , x>0\end{cases}$
f is continuous at $\mathrm{x}=0$, then $\alpha^{2}+\beta^{2}$ is equal to :
(1) 48
(2) 12
(3) 3
(4) 6

Ans. (2)
Sol. $f\left(0^{-}\right)=\lim _{\mathrm{x} \rightarrow 0^{-}} \frac{2 \sin ^{2} \mathrm{x}}{\mathrm{x}^{2}}=2=\alpha$
$f\left(0^{+}\right)=\lim _{x \rightarrow 0^{+}} \beta \times \sqrt{2} \frac{\sin \frac{x}{2}}{2 \frac{x}{2}}=\frac{\beta}{\sqrt{2}}=2$
$\Rightarrow \beta=2 \sqrt{2}$
$\alpha^{2}+\beta^{2}=4+8=12$
2. Three urns A, B and C contain 7 red, 5 black; 5 red, 7 black and 6 red, 6 black balls, respectively. One of the urn is selected at random and a ball is drawn from it. If the ball drawn is black, then the probability that it is drawn from urn A is :
(1) $\frac{4}{17}$
(2) $\frac{5}{18}$
(3) $\frac{7}{18}$
(4) $\frac{5}{16}$

Ans. (2)
Sol.

A	B	C
$7 R, 5 B$	$5 R, 7 B$	$6 R, 6 B$

$\mathrm{P}(\mathrm{B})=\frac{1}{3} \cdot \frac{5}{12}+\frac{1}{3} \cdot \frac{7}{12}+\frac{1}{3} \cdot \frac{6}{12}$
required probability $=\frac{\frac{1}{3} \cdot \frac{5}{12}}{\frac{1}{3} \cdot\left[\frac{5}{12}+\frac{7}{12}+\frac{6}{12}\right]}=\frac{5}{18}$

TEST PAPER WITH SOLUTION

3. The vertices of a triangle are $\mathrm{A}(-1,3), \mathrm{B}(-2,2)$ and $\mathrm{C}(3,-1)$. A new triangle is formed by shifting the sides of the triangle by one unit inwards. Then the equation of the side of the new triangle nearest to origin is :
(1) $x-y-(2+\sqrt{2})=0$
(2) $-x+y-(2-\sqrt{2})=0$
(3) $x+y-(2-\sqrt{2})=0$
(4) $x+y+(2-\sqrt{2})=0$

Ans. (3)

equation of $\mathrm{AC} \rightarrow \mathrm{x}+\mathrm{y}=2$
equation of line parallel to $A C x+y=d$
$\left|\frac{\mathrm{d}-2}{\sqrt{2}}\right|=1$
$\mathrm{d}=2-\sqrt{2}$
eq ${ }^{\text {n }}$ of new required line
$x+y=2-\sqrt{2}$
4. If the solution $y=y(x)$ of the differential equation $\left(x^{4}+2 x^{3}+3 x^{2}+2 x+2\right) d y-\left(2 x^{2}+2 x+3\right) d x=0$ satisfies $y(-1)=-\frac{\pi}{4}$, then $y(0)$ is equal to :
(1) $-\frac{\pi}{12}$
(2) 0
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{2}$

Ans. (3)

Sol. $\int d y=\int \frac{\left(2 x^{2}+2 x+3\right)}{x^{4}+2 x^{3}+3 x^{2}+2 x+2} d x$
$y=\int \frac{\left(2 x^{2}+2 x+3\right)}{\left(x^{2}+1\right)\left(x^{2}+2 x+2\right)} d x$
$y=\int \frac{d x}{x^{2}+2 x+2}+\int \frac{d x}{x^{2}+1}$
$y=\tan ^{-1}(x+1)+\tan ^{-1} x+C$
$y(-1)=\frac{-\pi}{4}$
$\frac{-\pi}{4}=0-\frac{\pi}{4}+\mathrm{C} \Rightarrow \mathrm{C}=0$
$\Rightarrow \mathrm{y}=\tan ^{-1}(\mathrm{x}+1)+\tan ^{-1} \mathrm{x}$
$y(0)=\tan ^{-1} 1=\frac{\pi}{4}$
5. Let the sum of the maximum and the minimum values of the function $f(x)=\frac{2 x^{2}-3 x+8}{2 x^{2}+3 x+8}$ be $\frac{m}{n}$, where $\operatorname{gcd}(m, n)=1$. Then $m+n$ is equal to :
(1) 182
(2) 217
(3) 195
(4) 201

Ans. (4)
Sol. $\mathrm{y}=\frac{2 \mathrm{x}^{2}-3 \mathrm{x}+8}{2 \mathrm{x}^{2}+3 \mathrm{x}+8}$
$x^{2}(2 y-2)+x(3 y+3)+8 y-8=0$
use $\mathrm{D} \geq 0$
$(3 y+3)^{2}-4(2 y-2)(8 y-8) \geq 0$
$(11 y-5)(5 y-11) \leq 0$
$\Rightarrow \mathrm{y} \in\left[\frac{5}{11}, \frac{11}{5}\right]$
$y=1$ is also included
6. One of the points of intersection of the curves $y=1+3 x-2 x^{2}$ and $y=\frac{1}{x}$ is $\left(\frac{1}{2}, 2\right)$. Let the area of the region enclosed by these curves be $\frac{1}{24}(\ell \sqrt{5}+\mathrm{m})-\operatorname{nlog}_{\mathrm{e}}(1+\sqrt{5})$, where $\ell, \mathrm{m}, \mathrm{n} \in$ N . Then $\ell+\mathrm{m}+\mathrm{n}$ is equal to
(1) 32
(2) 30
(3) 29
(4) 31

Ans. (2)

Sol.

$A=\int_{\frac{1}{2}}^{\frac{1+\sqrt{5}}{2}}\left(1+3 x-2 x^{2}-\frac{1}{x}\right) d x$
$A=\left[x+\frac{3 x^{2}}{2}-\frac{2 x^{3}}{3}-\ln x\right]_{\frac{1}{2}}^{\frac{1+\sqrt{5}}{2}}$
$A=\frac{1+\sqrt{5}}{2}+\frac{3}{2}\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\frac{2}{3}\left(\frac{1+\sqrt{5}}{2}\right)^{3}-\ln \left(\frac{1+\sqrt{5}}{2}\right)$
$-\frac{1}{2}-\frac{3}{2}\left(\frac{1}{4}\right)+\frac{2}{3}\left(\frac{1}{8}\right)+\ln \left(\frac{1}{2}\right)$
$\mathrm{A}=\frac{1}{2}+\frac{\sqrt{5}}{2}+\frac{3}{8}+\frac{3}{4} \sqrt{5}+\frac{15}{8}-\frac{4}{3}-\frac{2}{3} \sqrt{5}$
$-\frac{1}{2}-\frac{3}{8}+\frac{1}{12}-\ln (1+\sqrt{5})$
$=\sqrt{5}\left(\frac{1}{2}+\frac{3}{4}-\frac{2}{3}\right)+\frac{15}{8}-\frac{4}{3}+\frac{1}{12}-\ln (1+\sqrt{5})$
$=\frac{14}{24} \sqrt{5}+\frac{15}{24}-\ln (1+\sqrt{5})$
7. If the system of equations
$x+(\sqrt{2} \sin \alpha) y+(\sqrt{2} \cos \alpha) z=0$
$x+(\cos \alpha) y+(\sin \alpha) z=0$
$x+(\sin \alpha) y-(\cos \alpha) z=0$
has a non-trivial solution, then $\alpha \in\left(0, \frac{\pi}{2}\right)$ is equal to :
(1) $\frac{3 \pi}{4}$
(2) $\frac{7 \pi}{24}$
(3) $\frac{5 \pi}{24}$
(4) $\frac{11 \pi}{24}$

Ans. (3)

Sol. $\quad\left|\begin{array}{ccc}1 & \sqrt{2} \sin \alpha & \sqrt{2} \cos \alpha \\ 1 & \sin \alpha & -\cos \alpha \\ 1 & \cos \alpha & \sin \alpha\end{array}\right|=0$
$\Rightarrow 1-\sqrt{2} \sin \alpha(\sin \alpha+\cos \alpha)+\sqrt{2} \cos \alpha(\cos \alpha-\sin \alpha)=0$
$\Rightarrow 1+\sqrt{2} \cos 2 \alpha-\sqrt{2} \sin 2 \alpha=0$
$\cos 2 \alpha-\sin 2 \alpha=-\frac{1}{\sqrt{2}}$
$\cos \left(2 \alpha+\frac{\pi}{4}\right)=-\frac{1}{2}$
$2 \alpha+\frac{\pi}{4}=2 \mathrm{n} \pi \pm \frac{2 \pi}{3}$
$\alpha+\frac{\pi}{8}=n \pi \pm \frac{\pi}{3}$
$\mathrm{n}=0$,
$\mathrm{x}=\frac{\pi}{3}-\frac{\pi}{8}=\frac{5 \pi}{24}$
8. There are 5 points $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}$ on the side AB , excluding A and B, of a triangle $A B C$. Similarly there are 6 points $\mathrm{P}_{6}, \mathrm{P}_{7}, \ldots, \mathrm{P}_{11}$ on the side BC and 7 points $\mathrm{P}_{12}, \mathrm{P}_{13}, \ldots, \mathrm{P}_{18}$ on the side CA of the triangle. The number of triangles, that can be formed using the points $\mathrm{P}_{1}, \mathrm{P}_{2}, \ldots, \mathrm{P}_{18}$ as vertices, is :
(1) 776
(2) 751
(3) 796
(4) 771

Ans. (2)
Sol. ${ }^{18} \mathrm{C}_{3}-{ }^{5} \mathrm{C}_{3}-{ }^{6} \mathrm{C}_{3}-{ }^{7} \mathrm{C}_{3}$
$=751$
9. Let $f(\mathrm{x})=\left\{\begin{array}{cc}-2, & -2 \leq \mathrm{x} \leq 0 \\ \mathrm{x}-2, & 0<\mathrm{x} \leq 2\end{array}\right.$ and $\mathrm{h}(\mathrm{x})=\mathrm{f}(|\mathrm{x}|)+|\mathrm{f}(\mathrm{x})|$. Then $\int_{-2}^{2} h(x) d x$ is equal to :
(1) 2
(2) 4
(3) 1
(4) 6

Ans. (1)

Sol.

$\mathrm{f}(|\mathrm{x}|) \rightarrow$
$|f(x)|$

$$
h(x)=\left\{\begin{array}{cc}
x-2+2-x=0, & 0 \leq x \leq 2 \\
-x-2+2=-x & -2 \leq x<0
\end{array}\right.
$$

$\Rightarrow \int_{0}^{2} h(x) d x=0$ and $\int_{-2}^{0} h(x) d x=2$
10. The sum of all rational terms in the expansion of $\left(2^{\frac{1}{5}}+5^{\frac{1}{3}}\right)^{15}$ is equal to :
(1) 3133
(2) 633
(3) 931
(4) 6131

Ans. (1)
Sol. $\mathrm{T}_{\mathrm{r}+1}={ }^{15} \mathrm{C}_{\mathrm{r}}\left(5^{\frac{1}{3}}\right)^{\mathrm{r}}\left(2^{\frac{1}{5}}\right)^{15-\mathrm{r}}$
$={ }^{15} \mathrm{C}_{\mathrm{r}} 5^{\frac{\mathrm{r}}{3}} \cdot 2^{\frac{15-\mathrm{r}}{5}}$
$\mathrm{R}=3 \lambda, 15 \mu$
$\Rightarrow \mathrm{r}=0,15$
2 rational terms
$\Rightarrow{ }^{15} \mathrm{C}_{0} 2^{3}+{ }^{15} \mathrm{C}_{15}(5)^{5}$
$=8+3125=3133$
11. Let a unit vector which makes an angle of 60° with $2 \hat{i}+2 \hat{j}-\hat{k}$ and an angle of 45° with $\hat{i}-\hat{k}$ be \vec{C}. Then $\overrightarrow{\mathrm{C}}+\left(-\frac{1}{2} \hat{\mathrm{i}}+\frac{1}{3 \sqrt{2}} \hat{\mathrm{j}}-\frac{\sqrt{2}}{3} \hat{\mathrm{k}}\right)$ is :
(1) $-\frac{\sqrt{2}}{3} \hat{\mathrm{i}}+\frac{\sqrt{2}}{3} \hat{\mathrm{j}}+\left(\frac{1}{2}+\frac{2 \sqrt{2}}{3}\right) \hat{\mathrm{k}}$
(2) $\frac{\sqrt{2}}{3} \hat{\mathrm{i}}+\frac{1}{3 \sqrt{2}} \hat{\mathrm{j}}-\frac{1}{2} \hat{\mathrm{k}}$
(3) $\left(\frac{1}{\sqrt{3}}+\frac{1}{2}\right) \hat{\mathrm{i}}+\left(\frac{1}{\sqrt{3}}-\frac{1}{3 \sqrt{2}}\right) \hat{\mathrm{j}}+\left(\frac{1}{\sqrt{3}}+\frac{\sqrt{2}}{3}\right) \hat{\mathrm{k}}$
(4) $\frac{\sqrt{2}}{3} \hat{i}-\frac{1}{2} \hat{k}$

Ans. (4)
Sol. $\overrightarrow{\mathrm{C}}=\mathrm{C}_{1} \hat{i}+\mathrm{C}_{2} \hat{\mathrm{j}}+\mathrm{C}_{3} \hat{\mathrm{k}}$
$\mathrm{C}_{1}{ }^{2}+\mathrm{C}_{2}{ }^{2}+\mathrm{C}_{3}{ }^{2}=1$
$\overrightarrow{\mathrm{C}} \cdot(2 \hat{\mathrm{i}}+2 \hat{\mathrm{j}}-\hat{\mathrm{k}})=|\mathrm{C}| \sqrt{9} \cos 60^{\circ}$
$2 \mathrm{C}_{1}+2 \mathrm{C}_{2}-\mathrm{C}_{3}=\frac{3}{2}$
$\mathrm{C}_{1}-\mathrm{C}_{3}=1$
$\mathrm{C}_{1}+2 \mathrm{C}_{2}=\frac{1}{2}$
$\mathrm{C}_{1}=\frac{\sqrt{2}}{3}+\frac{1}{2}$
$\mathrm{C}_{2}=\frac{-1}{3 \sqrt{2}}$
$\mathrm{C}_{3}=\frac{\sqrt{2}}{3}-\frac{1}{2}$
12. Let the first three terms $2, p$ and q, with $q \neq 2$, of a G.P. be respectively the $7^{\text {th }}, 8^{\text {th }}$ and $13^{\text {th }}$ terms of an A.P. If the $5^{\text {th }}$ term of the G.P. is the $\mathrm{n}^{\text {th }}$ term of the A.P., then n is equal to
(1) 151
(2) 169
(3) 177
(4) 163

Ans. (4)
Sol. $\mathrm{p}^{2}=2 \mathrm{q}$
$2=a+6 d \quad$...(i)
$\mathrm{p}=\mathrm{a}+7 \mathrm{~d} \quad$...(ii)
$\mathrm{q}=\mathrm{a}+12 \mathrm{~d} \ldots$ (iii)
$\mathrm{p}-2=\mathrm{d}$
$\mathrm{q}-\mathrm{p}=5 \mathrm{~d}$
((iii) - (ii))
$\mathrm{q}-\mathrm{p}=5(\mathrm{p}-2)$
$q=6 p-10$
$p^{2}=2(6 p-10)$
$p^{2}-12 p+20=0$
$\mathrm{p}=10,2$
$\mathrm{p}=10 ; \mathrm{q}=50$
$\mathrm{d}=8$
$a=-46$
$2,10,50,250,1250$
$\mathrm{ar}^{4}=\mathrm{a}+(\mathrm{n}-1) \mathrm{d}$
$1250=-46+(n-1) 8$
$\mathrm{n}=163$
13. Let $a, b \in R$. Let the mean and the variance of 6 observations $-3,4,7,-6, \mathrm{a}, \mathrm{b}$ be 2 and 23 , respectively. The mean deviation about the mean of these 6 observations is :
(1) $\frac{13}{3}$
(2) $\frac{16}{3}$
(3) $\frac{11}{3}$
(4) $\frac{14}{3}$

Ans. (1)
Sol. $\frac{\sum x_{i}}{6}=2$ and $\frac{\sum x_{i}^{2}}{N}-\mu^{2}=23$
$\alpha+\beta=10$
$\alpha^{2}+\beta^{2}=52$
solving we get $\alpha=4, \beta=6$
$\frac{\sum\left|\mathrm{x}_{\mathrm{i}}-\overline{\mathrm{x}}\right|}{6}=\frac{5+2+5+8+2+4}{6}=\frac{13}{3}$
14. If 2 and 6 are the roots of the equation $\mathrm{ax}^{2}+\mathrm{bx}+1=0$, then the quadratic equation, whose roots are $\frac{1}{2 a+b}$ and $\frac{1}{6 a+b}$, is :
(1) $2 x^{2}+11 x+12=0$
(2) $4 x^{2}+14 x+12=0$
(3) $x^{2}+10 x+16=0$
(4) $x^{2}+8 x+12=0$

Ans. (4)
Sol. Sum $=8=-\frac{\mathrm{b}}{\mathrm{a}}$
Product $=12=\frac{1}{a} \quad \Rightarrow a=\frac{1}{12}$

$$
b=-\frac{2}{3}
$$

$2 \mathrm{a}+\mathrm{b}=\frac{2}{12}-\frac{2}{3}=-\frac{1}{2}$
$6 a+b=\frac{6}{12}-\frac{2}{3}=-\frac{1}{6}$
sum $=-8$
$\mathrm{P}=12$
$x^{2}+8 x+12=0$
15. Let α and β be the sum and the product of all the non-zero solutions of the equation $(\bar{z})^{2}+|z|=0, z \in C$. Then $4\left(\alpha^{2}+\beta^{2}\right)$ is equal to :
(1) 6
(2) 4
(3) 8
(4) 2

Ans. (2)

Sol. $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\bar{z}=x-i y$
$\bar{z}^{2}=\mathrm{x}^{2}-\mathrm{y}^{2}-2 \mathrm{ixy}$
$\Rightarrow x^{2}-y^{2}-2 i x y+\sqrt{x^{2}+y^{2}}=0$
$\Rightarrow \mathrm{x}=0 \quad$ or $\quad \mathrm{y}=0$
$-y^{2}+|y|=0 \quad x^{2}+|x|=0$
$|y|=|y|^{2}$
$\Rightarrow \mathrm{x}=0$
$y=0, \pm 1$
$\Rightarrow \mathrm{i},-\mathrm{i}$
$\Rightarrow \alpha=\mathrm{i}-\mathrm{i}=0$
are roots $\beta=i(-i)=1$ $4(0+1)=4$
16. Let the point, on the line passing through the points $P(1,-2,3)$ and $Q(5,-4,7)$, farther from the origin and at a distance of 9 units from the point P, be (α, β, γ). Then $\alpha^{2}+\beta^{2}+\gamma^{2}$ is equal to :
(1) 155
(2) 150
(3) 160
(4) 165

Ans. (1)
Sol. PQ line
$\frac{\mathrm{x}-1}{4}=\frac{\mathrm{y}+2}{-2}=\frac{\mathrm{z}-3}{4}$
pt $(4 t+1,-2 t-2,4 t+3)$
distance ${ }^{2}=16 t^{2}+4 t^{2}+16 t^{2}=81$
$t= \pm \frac{3}{2}$
pt $(7,-5,9)$
$\alpha^{2}+\beta^{2}+\gamma^{2}=155$
option (1)
17. A square is inscribed in the circle $x^{2}+y^{2}-10 x-6 y+30=0$. One side of this square is parallel to $y=x+3$. If $\left(x_{i}, y_{i}\right)$ are the vertices of the square, then $\sum\left(x_{i}^{2}+y_{i}^{2}\right)$ is equal to :
(1) 148
(2) 156
(3) 160
(4) 152

Ans. (4)
Sol.

$y=x+c \quad \&$
$x+y+d=0$
$\left|\frac{5-3+\mathrm{c}}{\sqrt{2}}\right|=\sqrt{2}$
$\left|\frac{8+\mathrm{d}}{\sqrt{2}}\right|=\sqrt{2}$
$|c+2|=2$
$8+d= \pm 2$
$\mathrm{c}=0,-4$
$\mathrm{d}=-10,-6$
pts $(5,5),(3,3),(7,3),(5,1)$
$\sum\left(x_{i}^{2}+y_{1}^{2}\right)=25+25+9+9+49+9+25+1$
$=152$
Option (4)
domain of the function $\sin ^{-1}\left(\frac{3 x-22}{2 x-19}\right)+\log _{e}\left(\frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}\right)$ is $(\alpha, \beta]$, then $3 \alpha+10 \beta$ is equal to :
(1) 97
(2) 100
(3) 95
(4) 98

Ans. (1)
Sol. $-1 \leq \frac{3 x-22}{2 x-19} \leq 1 \quad \frac{3 x^{2}-8 x+5}{x^{2}-3 x-10}>0$
$x \in\left(5, \frac{41}{5}\right]$
$3 \alpha+10 \beta=97$
Option (1)
19. Let $f(\mathrm{x})=\mathrm{x}^{5}+2 \mathrm{e}^{\mathrm{x} / 4}$ for all $\mathrm{x} \in$ R. Consider a function $g(x)$ such that $(g o f)(x)=x$ for all $x \in R$. Then the value of $8 \mathrm{~g}^{\prime}(2)$ is :
(1) 16
(2) 4
(3) 8
(4) 2

Ans. (1)
Sol. $f(x)=2$
when $x=0$
$\because g^{\prime}(f(x)) f^{\prime}(x)=1$
$g^{\prime}(2)=\frac{1}{f^{\prime}(0)}$
$\because \mathrm{f}^{\prime}(\mathrm{x})=5 \mathrm{x}^{4}+\frac{2}{4} \mathrm{e}^{\mathrm{x} / 4}$
$\mathrm{g}^{\prime}(2)=2$
Ans $=16$
Option (1)
20. Let $\alpha \in(0, \infty)$ and $A=\left[\begin{array}{lll}1 & 2 & \alpha \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right]$.

If $\operatorname{det}\left(\operatorname{adj}\left(2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right) \cdot \operatorname{adj}\left(\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right)\right)=2^{8}$, then $(\operatorname{det}(\mathrm{A}))^{2}$ is equal to :
(1) 1
(2) 49
(3) 16
(4) 36

Ans. (3)

Sol. $\left|\operatorname{adj}\left(\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right)\left(2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right)\right|=28$

$$
\begin{aligned}
& \left|\left(\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right)\left(2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right)\right|=24 \\
& \left|\mathrm{~A}-2 \mathrm{~A}^{\mathrm{T}}\right|\left|2 \mathrm{~A}-\mathrm{A}^{\mathrm{T}}\right|= \pm 16 \\
& \left(\mathrm{~A}-2 \mathrm{~A}^{\mathrm{T}}\right)^{\mathrm{T}}=\mathrm{A}^{\mathrm{T}}-2 \mathrm{~A} \\
& \left|\mathrm{~A}-2 \mathrm{~A}^{\mathrm{T}}\right|=\left|\mathrm{A}^{\mathrm{T}}-2 \mathrm{~A}\right| \\
& \Rightarrow\left|\mathrm{A}-2 \mathrm{~A}^{\mathrm{T}}\right|^{2}=16 \\
& \left|\mathrm{~A}-2 \mathrm{~A}^{\mathrm{T}}\right|= \pm 4
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
1 & 2 & \alpha \\
1 & 0 & 1 \\
0 & 1 & 2
\end{array}\right]-\left[\begin{array}{ccc}
2 & 2 & 0 \\
4 & 0 & 2 \\
2 \alpha & 2 & 4
\end{array}\right]
$$

$$
\left|\begin{array}{ccc}
-1 & 0 & \alpha \\
-3 & 0 & -1 \\
-2 \alpha & -1 & -2
\end{array}\right|
$$

$$
1+3 \alpha=4
$$

$$
3 \alpha=3
$$

$$
\alpha=1
$$

$|\mathrm{A}|=\left|\begin{array}{lll}1 & 2 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 2\end{array}\right|=-1-3=-4$
$|A|^{2}=16$

SECTION-B

21. If $\lim _{x \rightarrow 1} \frac{(5 x+1)^{1 / 3}-(x+5)^{1 / 3}}{(2 x+3)^{1 / 2}-(x+4)^{1 / 2}}=\frac{m \sqrt{5}}{n(2 n)^{2 / 3}}$, where $\operatorname{gcd}(m, n)=1$, then $8 m+12 n$ is equal to \qquad
Ans. (100)
Sol. $\lim _{x \rightarrow 1} \frac{\frac{1}{3}(5 x+1)^{-2 / 3} 5-\frac{1}{3}(x+5)^{-2 / 3}}{\frac{1}{2}(2 x+3)^{-1 / 2} \cdot 2-\frac{1}{2}(x+4)^{-1 / 2}}$
$=\frac{8}{3} \frac{\sqrt{5}}{6^{2 / 3}} \quad \begin{aligned} & \mathrm{m}=8 \\ & \mathrm{n}=3\end{aligned}$
$8 \mathrm{~m}+12 \mathrm{n}=100$
22. In a survey of 220 students of a higher secondary school, it was found that at least 125 and at most 130 students studied Mathematics; at least 85 and at most 95 studied Physics; at least 75 and at most 90 studied Chemistry; 30 studied both Physics and Chemistry; 50 studied both Chemistry and Mathematics; 40 studied both Mathematics and Physics and 10 studied none of these subjects. Let m and n respectively be the least and the most number of students who studied all the three subjects. Then $m+n$ is equal to \qquad
Ans. (45)

Sol.

C
$125 \leq m+90-\mathrm{x} \leq 130$
$85 \leq P+70-x \leq 95$
$75 \leq \mathrm{C}+80-\mathrm{x} \leq 90$
$\mathrm{m}+\mathrm{P}+\mathrm{C}+120-2 \mathrm{x}=210$
$\Rightarrow 15 \leq x \leq 45 \& 30-x \geq 0$
$\Rightarrow 15 \leq \mathrm{x} \leq 30$
$30+15=45$
23. Let the solution $y=y(x)$ of the differential equation $\frac{d y}{d x}-y=1+4 \sin x$ satisfy $y(\pi)=1$. Then $\mathrm{y}\left(\frac{\pi}{2}\right)+10$ is equal to \qquad
Ans. (7)
Sol. $y e^{-x}=\int\left(e^{-x}+4 e^{-x} \sin x\right) d x$
$\mathrm{ye}^{-\mathrm{x}}=-\mathrm{e}^{-\mathrm{x}}-2\left(\mathrm{e}^{-\mathrm{x}} \sin \mathrm{x} \mathrm{e}^{-\mathrm{x}} \cos \mathrm{x}\right)+\mathrm{C}$
$y=-1-2(\sin x+\cos x)+c e^{x}$
$\because \mathrm{y}(\pi)=1 \Rightarrow \mathrm{c}=0$
$y(\pi / 2)=-1-2=-3$
Ans $=10-3=7$
24. If the shortest distance between the lines $\frac{x+2}{2}=\frac{y+3}{3}=\frac{z-5}{4}$ and $\frac{x-3}{1}=\frac{y-2}{-3}=\frac{z+4}{2}$ is $\frac{38}{3 \sqrt{5}} \mathrm{k} \quad$ and $\quad \int_{0}^{\mathrm{k}}\left[\mathrm{x}^{2}\right] \mathrm{dx}=\alpha-\sqrt{\alpha}$, where $\quad[\mathrm{x}]$ denotes the greatest integer function, then $6 \alpha^{3}$ is equal to \qquad
Ans. (48)
Sol. $\frac{38}{3 \sqrt{5}} \hat{\mathrm{k}}=\frac{(5 \hat{\mathrm{i}}+5 \hat{\mathrm{j}}-9 \hat{\mathrm{k}})}{\sqrt{5}} \cdot\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & 3 & 4 \\ 1 & -3 & 2\end{array}\right|$
$\frac{38}{3 \sqrt{5}} \hat{\mathrm{k}}=\frac{19}{\sqrt{5}}$
$\mathrm{k}=\frac{19}{\sqrt{5}}$
$\mathrm{k}=\frac{3}{2}$
$\int_{0}^{3 / 2}\left[x^{2}\right]=\int_{0}^{1} 0+\int_{1}^{\sqrt{2}} 1+\int_{\sqrt{2}}^{3 / 2} 2$
$=\sqrt{2}-1+2\left(\frac{3}{2}-\sqrt{2}\right)$
$=2-\sqrt{2}$
$\alpha=2$
$\Rightarrow 6 \alpha^{3}=48$
25. Let A be a square matrix of order 2 such that $|\mathrm{A}|=2$ and the sum of its diagonal elements is -3 . If the points (x, y) satisfying $A^{2}+x A+y I=0$ lie on a hyperbola, whose transverse axis is parallel to the x -axis, eccentricity is e and the length of the latus rectum is ℓ, then $\mathrm{e}^{4}+\ell^{4}$ is equal to \qquad
Ans. (Bouns)
NTA Ans. (25)
Sol. Given $|\mathrm{A}|=2$
trace $A=-3$
and $A^{2}+x A+y I=0$
$\Rightarrow \mathrm{x}=3, \mathrm{y}=2$
so, information is incomplete to determine eccentricity of hyperbola (e) and length of latus rectum of hyperbola (ℓ)
26. Let $\mathrm{a}=1+\frac{{ }^{2} \mathrm{C}_{2}}{3!}+\frac{{ }^{3} \mathrm{C}_{2}}{4!}+\frac{{ }^{4} \mathrm{C}_{2}}{5!}+\ldots$,

$$
\mathrm{b}=1+\frac{{ }^{1} \mathrm{C}_{0}+{ }^{1} \mathrm{C}_{1}}{1!}+\frac{{ }^{2} \mathrm{C}_{0}+{ }^{2} \mathrm{C}_{1}+{ }^{2} \mathrm{C}_{2}}{2!}+\frac{{ }^{3} \mathrm{C}_{0}+{ }^{3} \mathrm{C}_{1}+{ }^{3} \mathrm{C}_{2}+{ }^{3} \mathrm{C}_{3}}{3!}+\ldots
$$

Then $\frac{2 b}{a^{2}}$ is equal to \qquad
Ans. (8)
Sol. $f(x)=1+\frac{(1+x)}{1!}+\frac{(1+x)^{2}}{2!}+\frac{(1+x)^{3}}{3!}+\ldots .$.
$\frac{e^{(1+x)}}{1+x}=\frac{1}{1+x}+1+\frac{(1+x)}{2!}+\frac{(1+x)^{2}}{3!}+\frac{(1+x)^{2}}{4!}$
coef x^{2} in RHS : $1+\frac{{ }^{2} \mathrm{C}_{2}}{3}+\frac{{ }^{3} \mathrm{C}_{2}}{4}+\ldots=\mathrm{a}$
coeff. x^{2} in L.H.S.
$e\left(1+x+\frac{x^{2}}{2!}\right) \ldots\left(1-x+\frac{x^{2}}{2!} \cdots \cdots\right)$
is $\mathrm{e}-\mathrm{e}+\frac{\mathrm{e}}{2!}=\mathrm{a}$
$\mathrm{b}=1+\frac{2}{1!}+\frac{2^{2}}{2!}+\frac{2^{3}}{3!}+\ldots \ldots=\mathrm{e}^{2}$
$\frac{2 \mathrm{~b}}{\mathrm{a}^{2}}=8$
27. Let A be a 3×3 matrix of non-negative real elements such that $\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. Then the maximum value of $\operatorname{det}(\mathrm{A})$ is \qquad
Ans. (27)
Sol. Let $A=\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$
$\mathrm{A}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=3\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
$\Rightarrow a_{1}+a_{2}+a_{3}=3$
$\Rightarrow \mathrm{b}_{1}+\mathrm{b}_{2}+\mathrm{b}_{3}=3$
$\Rightarrow \mathrm{c}_{1}+\mathrm{ca}_{2}+\mathrm{c}_{3}=3$
Now,
$|A|=\left(a_{1} b_{2} c_{3}+a_{2} b_{3} c_{1}+a_{3} b_{1} c_{2}\right)$
$-\left(\mathrm{a}_{3} \mathrm{~b}_{2} \mathrm{c}_{1}+\mathrm{a}_{2} \mathrm{~b}_{1} \mathrm{c}_{3}+\mathrm{a}_{1} \mathrm{~b}_{3} \mathrm{c}_{2}\right)$
\therefore From above in formation, clearly $|\mathrm{A}|_{\max }=27$, when $\mathrm{a}_{1}=3, \mathrm{~b}_{2}=3, \mathrm{c}_{3}=3$
28. Let the length of the focal chord $P Q$ of the parabola $y^{2}=12 x$ be 15 units. If the distance of $P Q$ from the origin is p, then $10 p^{2}$ is equal to \qquad -

Ans. (72)
Sol.

length of focal chord $=4 a \operatorname{cosec}^{2} \theta=15$
$12 \operatorname{cosec}^{2} \theta=15$
$\sin ^{2} \theta=\frac{4}{5}$
$\tan ^{2} \theta=4$
$\tan \theta=2$
equation $\frac{y-0}{x-3}=2$
$y=2 x-6$
$2 x-y-6=0$
$P=\frac{6}{\sqrt{5}}$
$10 \mathrm{p}^{2}=10 \cdot \frac{36}{5}=72$
29. Let ABC be a triangle of area $15 \sqrt{2}$ and the vectors $\overrightarrow{\mathrm{AB}}=\hat{\mathrm{i}}+2 \hat{\mathrm{j}}-7 \hat{\mathrm{k}}, \quad \overrightarrow{\mathrm{BC}}=\mathrm{a} \hat{\mathrm{i}}+\mathrm{b} \hat{\mathrm{j}}+\mathrm{c} \hat{\mathrm{k}}$ and $\overrightarrow{\mathrm{AC}}=6 \hat{\mathrm{i}}+d \hat{\mathrm{j}}-2 \hat{\mathrm{k}}, d>0$. Then the square of the length of the largest side of the triangle $A B C$ is
Ans. (54)
Sol.

Download the new ALLEN app
 \& enroll for Online Programs

Area $=\frac{1}{2}\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 1 & 2 & -7 \\ 6 & \mathrm{~d} & -2\end{array}\right|=15 \sqrt{2}$
$(-4+7 \mathrm{~d}) \hat{\mathrm{i}}-\hat{\mathrm{j}}(-2+42)+\hat{\mathrm{k}}(\mathrm{d}-12)$
$(7 \mathrm{~d}-4)^{2}+(40)^{2}+(\mathrm{d}-12)^{2}=1800$
$50 d^{2}-80 d-40=0$
$5 \mathrm{~d}^{2}-8 \mathrm{~d}-4=0$
$5 \mathrm{~d}^{2}-10 \mathrm{~d}-2 \mathrm{~d}-4$
$5 \mathrm{~d}(\mathrm{~d}-2)+2(\mathrm{~d}-2)=0$
$\mathrm{d}=2$ or $\mathrm{d}=-\frac{2}{5}$
$\because \mathrm{d}>0, \mathrm{~d}=2$
$(a+1) \hat{i}+(b+2) \hat{j}+(c-7) \hat{k}=6 \hat{i}+2 \hat{j}-2 \hat{k}$
$a+1=6 \& b+2=2, c-7=-2$
$a=5 \quad b=0 \quad c=5$
$|\mathrm{AB}|=\sqrt{1+4+49}=\sqrt{54}$
$|\mathrm{BC}|=\sqrt{25+25}=\sqrt{50}$
$|\mathrm{AC}|=\sqrt{86+4+4}=\sqrt{44}$
Ans. 54
30. If $\int_{0}^{\frac{\pi}{4}} \frac{\sin ^{2} x}{1+\sin x \cos x} d x=\frac{1}{a} \log _{e}\left(\frac{a}{3}\right)+\frac{\pi}{b \sqrt{3}}$, where a, $b \in N$, then $a+b$ is equal to \qquad
Ans. (8)
Sol. $\int_{0}^{\frac{\pi}{2}} \frac{\sin ^{2} x}{1+\frac{1}{2} \sin 2 x} d x=\int_{0}^{\frac{\pi}{4}} \frac{1-\cos 2 x}{2+\sin 2 x} d x$
$\int \frac{1}{2+\sin 2 x}-\int \frac{\cos 2 x}{2+\sin 2 x}$
(I_{1})
$\left(I_{2}\right)$
$\left(\mathrm{I}_{1}\right)=\int \frac{\mathrm{dx}}{2+\frac{2 \tan \mathrm{x}}{1+\tan ^{2} \mathrm{x}}}$
$\int_{0}^{\frac{\pi}{4}} \frac{\sec ^{2} x d x}{2 \tan ^{2} x+2 \tan x+2}$
$\tan \mathrm{x}=\mathrm{t}$
$\frac{1}{2} \int_{0}^{1} \frac{d t}{\left(t+\frac{1}{2}\right)^{2}+\frac{3}{4}}=\frac{\pi}{6 \sqrt{3}}$
$\mathrm{I}_{2}=\int_{0}^{\pi / 4} \frac{\cos 2 \mathrm{x}}{2+\sin 2 \mathrm{x}} \mathrm{dx}=\frac{1}{2}\left(\ln \frac{3}{2}\right)$
$\mathrm{I}_{1}-\mathrm{I}_{2}=\frac{1}{\sqrt{3}} \frac{\pi}{6}+\frac{1}{2} \ln \frac{2}{3}$
$\Rightarrow \mathrm{a}=2, \mathrm{~b}=6$
Ans. 8

