FINAL JEE-MAIN EXAMINATION - APRIL, 2024
(Held On Saturday 06 ${ }^{\text {th }}$ April, 2024)
TIME: 9: 00 AM to 12:00 NOON

MATHEMATICS

SECTION-A

1. If $f(x)=\left\{\begin{array}{cl}x^{3} \sin \left(\frac{1}{x}\right) & , \quad x \neq 0 \\ 0, & x=0\end{array}\right.$,then
(1) $f^{\prime \prime}(0)=1$
(2) $\mathrm{f}^{\prime \prime}\left(\frac{2}{\pi}\right)=\frac{24-\pi^{2}}{2 \pi}$
(3) $\mathrm{f}^{\prime}\left(\frac{2}{\pi}\right)=\frac{12-\pi^{2}}{2 \pi}$
(4) $\mathrm{f}^{\prime \prime}(0)=0$

Ans. (2)
Sol. $f(x)=3 x^{2} \sin \left(\frac{1}{x}\right)-x \cos \left(\frac{1}{x}\right)$
$f^{\prime \prime}(x)=6 x \sin \left(\frac{1}{x}\right)-3 \cos \left(\frac{1}{x}\right)-\cos \left(\frac{1}{x}\right)-\frac{\sin \left(\frac{1}{x}\right)}{x}$
$\mathrm{f}^{\prime \prime}\left(\frac{2}{\pi}\right)=\frac{12}{\pi}-\frac{\pi}{2}=\frac{24-\pi^{2}}{2 \pi}$
2. If $\mathrm{A}(3,1,-1), \mathrm{B}\left(\frac{5}{3}, \frac{7}{3}, \frac{1}{3}\right), \mathrm{C}(2,2,1)$ and
$\mathrm{D}\left(\frac{10}{3}, \frac{2}{3}, \frac{-1}{3}\right)$ are the vertices of a quadrilateral ABCD , then its area is
(1) $\frac{4 \sqrt{2}}{3}$
(2) $\frac{5 \sqrt{2}}{3}$
(3) $2 \sqrt{2}$
(4) $\frac{2 \sqrt{2}}{3}$

Ans. (1)

Sol.

Area $\left.=\frac{1}{2} \right\rvert\, \overline{\mathrm{BD}} \times \overline{\mathrm{AC}}$

TEST PAPER WITH SOLUTION

$\overline{\mathrm{BD}}=\frac{5}{3} \hat{\mathrm{i}}-\frac{5}{3} \hat{\mathrm{j}}-\frac{2}{3} \hat{\mathrm{k}}$
$\overline{\mathrm{AC}}=\hat{\mathrm{i}}-\hat{\mathrm{j}}-2 \hat{\mathrm{k}}$
3. $\int_{0}^{\pi / 4} \frac{\cos ^{2} x \sin ^{2} x}{\left(\cos ^{3} x+\sin ^{3} x\right)^{2}} d x$ is equal to
(1) $1 / 12$
(2) $1 / 9$
(3) $1 / 6$
(4) $1 / 3$

Ans. (3)
Sol. Divide Nr \& Dr by cosx
$\int_{0}^{\pi / 4} \frac{\tan ^{2} x \sec ^{2} x d x}{\left(1+\tan ^{3} x\right)^{2}} d x$
Let $1+\tan ^{3} \mathrm{x}=\mathrm{t}$
$\tan ^{2} x \sec ^{2} x d x=\frac{d t}{3}$
$\frac{1}{3} \int_{1}^{2} \frac{\mathrm{dt}}{\mathrm{t}^{2}}=\frac{1}{6}$
4. The mean and standard deviation of 20 observations are found to be 10 and 2, respectively. On respectively, it was found that an observation by mistake was taken 8 instead of 12 . The correct standard deviation is
(1) $\sqrt{3.86}$
(2) 1.8
(3) $\sqrt{3.96}$
(4) 1.94

Ans. (3)
Sol. Mean $(\overline{\mathrm{x}})=10$
$\Rightarrow \frac{\sum \mathrm{x}_{\mathrm{i}}}{20}=10$
$\Sigma \mathrm{x}_{\mathrm{i}}=10 \times 20=200$
If 8 is replaced by 12 , then $\sum x_{i}=200-8+12=204$

Download the new ALLEN app \& enroll for Online Programs

Let $g(x)=x^{2}-4 x+9$
\therefore Correct mean $(\overline{\mathrm{x}})=\frac{\sum \mathrm{x}_{\mathrm{i}}}{20}$
$=\frac{204}{20}=10.2$
\because Standard deviation $=2$
\therefore Variance $=(\text { S.D. })^{2}=2^{2}=4$
$\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^{2}}{20}-\left(\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}\right)^{2}=4$
$\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^{2}}{20}-(10)^{2}=4$
$\Rightarrow \frac{\sum \mathrm{x}_{\mathrm{i}}^{2}}{20}=104$
$\Rightarrow \Sigma \mathrm{x}_{\mathrm{i}}^{2}=2080$
Now, replaced ' 8 ' observations by ' 12 '
Then, $\Sigma \mathrm{x}_{\mathrm{i}}^{2}=2080-8^{2}+12^{2}=2160$
\therefore Variance of removing observations
$\Rightarrow \frac{\Sigma \mathrm{x}_{\mathrm{i}}^{2}}{20}-\left(\frac{\Sigma \mathrm{x}_{\mathrm{i}}}{20}\right)^{2}$
$\Rightarrow \frac{2160}{20}-(10.2)^{2}$
$\Rightarrow 108-104.04$
$\Rightarrow 3.96$
Correct standard deviation
$=\sqrt{3.96}$
5. The function $f(x)=\frac{x^{2}+2 x-15}{x^{2}-4 x+9}, x \in R$ is
(1) both one-one and onto.
(2) onto but not one-one.
(3) neither one-one nor onto.
(4) one-one but not onto.

NTA Ans. (3)
Ans. Bonus
Sol. $f(x)=\frac{(x+5)(x-3)}{x^{2}-4 x+9}$

D <0
$\mathrm{g}(\mathrm{x})>0$ for $\mathrm{x} \in \mathrm{R}$

$\therefore \quad\left[\begin{array}{l}\mathrm{f}(-5)=0 \\ \mathrm{f}(3)=0\end{array}\right.$
So, $\mathrm{f}(\mathrm{x})$ is many-one.
again,
$y x^{2}-4 x y+9 y=x^{2}+2 x-15$
$x^{2}(y-1)-2 x(2 y+1)+(9 y+15)=0$
for $\forall \mathrm{x} \in \mathrm{R} \Rightarrow \mathrm{D} \geq 0$
$D=4(2 y+1)^{2}-4(y-1)(9 y+15) \geq 0$
$5 y^{2}+2 y+16 \leq 0$
$(5 y-8)(y+2) \leq 0$

$\mathrm{y} \in\left[-2, \frac{8}{5}\right]$ range
Note: If function is defined from $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ then only correct answer is option (3)
\Rightarrow Bonus
6. Let $\mathrm{A}=\{\mathrm{n} \in[100,700] \cap \mathrm{N}: \mathrm{n}$ is neither a multiple of 3 nor a multiple of 4$\}$. Then the number of elements in A is
(1) 300
(2) 280
(3) 310
(4) 290

Ans. (1)
Sol. $\mathrm{n}(3) \Rightarrow$ multiple of 3
102, 105, 108, , 699
$\mathrm{T}_{\mathrm{n}}=699=102+(\mathrm{n}-1)(3)$
$\mathrm{n}=200$
$\mathrm{n}(3)=200$
$\because \mathrm{n}(4) \Rightarrow$ multiple of 4
$100,104,108, \ldots ., 700$
$\mathrm{T}_{\mathrm{n}}=700=100+(\mathrm{n}-1)(4)$
$\mathrm{n}=151$
$\mathrm{n}(4)=151$
$\mathrm{n}(3 \cap 4) \Rightarrow$ multiple of $3 \& 4$ both
$108,120,132, \ldots . ., 696$
$\mathrm{T}_{\mathrm{n}}=696=108+(\mathrm{n}-1)(12)$
$\mathrm{n}=50$
$\mathrm{n}(3 \cap 4)=50$
$\mathrm{n}(3 \cup 4)=\mathrm{n}(3)+\mathrm{n}(4)-\mathrm{n}(3 \cap 4)$
$=200+151-50$
$=301$
$\mathrm{n}(\overline{3 \cup 4})=$ Total $-\mathrm{n}(3 \cup 4)=$ neither a multiple of 3 nor a multiple of 4
$=601-301=300$
7. Let C be the circle of minimum area touching the parabola $y=6-x^{2}$ and the lines $y=\sqrt{3}|x|$. Then, which one of the following points lies on the circle C ?
(1) $(2,4)$
(2) $(1,2)$
(3) $(2,2)$
(4) $(1,1)$

Ans. (1)
Sol.

Equation of circle
$x^{2}+(y-(6-r))^{2}=r^{2}$
touches $\sqrt{3} x-y=0$
$\mathrm{p}=\mathrm{r}$
$\frac{|0-(6-r)|}{2}=r$
$|\mathrm{r}-6|=2 \mathrm{r}$
$\mathrm{r}=2$
\therefore Circle $\mathrm{x}^{2}+(\mathrm{y}-4)^{2}=4$
$(2,4)$ Satisfies this equation
8. For $\alpha, \beta \in \mathrm{R}$ and a natural number n , let
$A_{r}=\left|\begin{array}{ccc}r & 1 & \frac{n^{2}}{2}+\alpha \\ 2 r & 2 & n^{2}-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$. Then $2 A_{10}-A_{8}$ is
(1) $4 \alpha+2 \beta$
(2) $2 \alpha+4 \beta$
(3) $2 n$
(4) 0

Ans. (1)
Sol. $\quad A_{r}=\left|\begin{array}{ccc}r & 1 & \frac{n^{2}}{2}+\alpha \\ 2 r & 2 & n^{2}-\beta \\ 3 r-2 & 3 & \frac{n(3 n-1)}{2}\end{array}\right|$
$2 \mathrm{~A}_{10}-\mathrm{A}_{8}=\left|\begin{array}{ccc}20 & 1 & \frac{\mathrm{n}^{2}}{2}+\alpha \\ 40 & 2 & \mathrm{n}^{2}-\beta \\ 56 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}\end{array}\right|-\left|\begin{array}{ccc}8 & 1 & \frac{\mathrm{n}^{2}}{2}+\alpha \\ 16 & 2 & \mathrm{n}^{2}-\beta \\ 22 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}\end{array}\right|$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
12 & 1 & \frac{\mathrm{n}^{2}}{2}+\alpha \\
24 & 2 & \mathrm{n}^{2}-\beta \\
34 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}
\end{array}\right| \\
& \Rightarrow\left|\begin{array}{ccc}
0 & 1 & \frac{\mathrm{n}^{2}}{2}+\alpha \\
0 & 2 & \mathrm{n}^{2}-\beta \\
-2 & 3 & \frac{\mathrm{n}(3 \mathrm{n}-1)}{2}
\end{array}\right| \\
& \Rightarrow-2\left(\left(\mathrm{n}^{2}-\beta\right)-\left(\mathrm{n}^{2}+2 \alpha\right)\right) \\
& \Rightarrow-2(-\beta-2 \alpha) \Rightarrow 4 \alpha+2 \beta
\end{aligned}
$$

9. The shortest distance between the lines $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5}$ and $\frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$ is
(1) $6 \sqrt{3}$
(2) $4 \sqrt{3}$
(3) $5 \sqrt{3}$
(4) $8 \sqrt{3}$

Ans. (2)
Sol. $\frac{x-3}{2}=\frac{y+15}{-7}=\frac{z-9}{5} \& \frac{x+1}{2}=\frac{y-1}{1}=\frac{z-9}{-3}$
$\mathrm{S} . \mathrm{D}=\frac{\left|\left(\overline{\mathrm{a}}_{2} \cdot \overline{\mathrm{a}}_{1}\right) \cdot\left(\overline{\mathrm{b}}_{1} \cdot \overline{\mathrm{~b}}_{2}\right)\right|}{\left|\overline{\mathrm{b}}_{1} \times \overline{\mathrm{b}}_{2}\right|}$
$\mathrm{a}_{1}=3,-15,9$
$\mathrm{b}_{1}=2,-7,5$
$\mathrm{a}_{2}=-1,1,9$

$$
\mathrm{b}_{2}=2,1,-3
$$

$a_{2}-a_{1}=-4,16,0$
$\overline{\mathrm{b}}_{1} \times \overline{\mathrm{b}}_{2}=\left|\begin{array}{ccc}\hat{\mathrm{i}} & \hat{\mathrm{j}} & \hat{\mathrm{k}} \\ 2 & -7 & 5 \\ 2 & 1 & -3\end{array}\right|=\hat{\mathrm{i}}(16)-\hat{\mathrm{j}}(-16)+\hat{\mathrm{k}}(16)$
$16(\hat{i}+\hat{j}+\hat{k})$
$\left|\overline{\mathrm{b}}_{1} \times \overline{\mathrm{b}}_{2}\right|=16 \sqrt{3}$
$\therefore\left(\overline{\mathrm{a}}_{2}-\overline{\mathrm{a}}_{1}\right) \cdot\left(\overline{\mathrm{b}}_{1}-\overline{\mathrm{b}}_{2}\right)=16[-4+16]=(16)(12)$
S.D. $=\frac{(16)(12)}{16 \sqrt{3}}=4 \sqrt{3}$
10. A company has two plants A and B to manufacture motorcycles. 60% motorcycles are manufactured at plant A and the remaining are manufactured at plant B. 80% of the motorcycles manufactured at plant A are rated of the standard quality, while 90% of the motorcycles manufactured at plant B are rated of the standard quality. A motorcycle picked up randomly from the total production is found to be of the standard quality. If p is the probability that it was manufactured at plant B, then 126 p is
(1) 54
(2) 64
(3) 66
(4) 56

Ans. (1)

Sol.

	A	B
Manufactured	60%	40%
Standard quality	80%	90%

$\mathrm{P}($ Manufactured at $\mathrm{B} /$ found standard quality $)=$?
A : Found S.Q
B : Manufacture B
C : Manufacture A
$\mathrm{P}\left(\mathrm{E}_{1}\right)=\frac{40}{100}$
$P\left(E_{2}\right)=\frac{60}{100}$
$\mathrm{P}\left(\mathrm{A} / \mathrm{E}_{1}\right)=\frac{90}{100}$
$\mathrm{P}\left(\mathrm{A} / \mathrm{E}_{2}\right)=\frac{80}{100}$
$\because P\left(E_{1} / A\right)=\frac{P\left(A / E_{1}\right) P\left(E_{1}\right)}{P\left(A / E_{1}\right) P\left(E_{1}\right)+P\left(A / E_{2}\right) P\left(E_{2}\right)}=\frac{3}{7}$
$\therefore 126 \mathrm{P}=54$
11. Let, α, β be the distinct roots of the equation $x^{2}-\left(t^{2}-5 t+6\right) x+1=0, t \in R$ and $a_{n}=\alpha^{n}+\beta^{n}$.
Then the minimum value of $\frac{a_{2023}+a_{2025}}{a_{2024}}$ is
(1) $1 / 4$
(2) $-1 / 2$
(3) $-1 / 4$
(4) $1 / 2$

Ans. (3)
Sol. by newton's theorem
$a_{n+2}-\left(t^{2}-5 t+6\right) a_{n+1}+a_{n}=0$
$\therefore \mathrm{a}_{2025}+\mathrm{a}_{2023}=\left(\mathrm{t}^{2}-5 \mathrm{t}+6\right) \mathrm{a}_{2024}$
$\therefore \frac{\mathrm{a}_{2025}+\mathrm{a}_{2023}}{\mathrm{a}_{2024}}=\mathrm{t}^{2}-5 \mathrm{t}+6$
$\because t^{2}-5 t+6=\left(t-\frac{5}{2}\right)^{2}-\frac{1}{4}$
\therefore minimum value $=-\frac{1}{4}$

Download the new ALLEN app \& enroll for Online Programs
12. Let the relations R_{1} and R_{2} on the set $X=\{1,2,3, \ldots, 20\}$ be given by $\mathrm{R}_{1}=\{(\mathrm{x}, \mathrm{y}): 2 \mathrm{x}-3 \mathrm{y}=2\}$ and $R_{2}=\{(x, y):-5 x+4 y=0\}$. If M and N be the minimum number of elements required to be added in R_{1} and R_{2}, respectively, in order to make the relations symmetric, then $\mathrm{M}+\mathrm{N}$ equals
(1) 8
(2) 16
(3) 12
(4) 10

Ans. (4)
Sol. $\mathrm{x}=\{1,2,3, \ldots \ldots .20\}$
$\mathrm{R}_{1}=\{(\mathrm{x}, \mathrm{y}): 2 \mathrm{x}-3 \mathrm{y}=2\}$
$\mathrm{R}_{2}=\{(\mathrm{x}, \mathrm{y}):-5 \mathrm{x}+4 \mathrm{y}=0\}$
$\mathrm{R}_{1}=\{(4,2),(7,4),(10,6),(13,8),(16,10),(19,12)\}$
$\mathrm{R}_{2}=\{(4,5),(8,10),(12,15),(16,20)\}$
in $\mathrm{R}_{1} 6$ element needed
in $\mathrm{R}_{2} 4$ element needed
So, total 6+4 = 10 element
13. Let a variable line of slope $m>0$ passing through the point $(4,-9)$ intersect the coordinate axes at the points A and B. the minimum value of the sum of the distances of A and B from the origin is
(1) 25
(2) 30
(3) 15
(4) 10

Ans. (1)
Sol. equation of line is
$y+9=m(x-4)$
$\therefore A=\left(\frac{9+4 m}{m}, 0\right)$

$$
B=(0,-9-4 m)
$$

$\therefore \mathrm{OA}+\mathrm{OB}=\frac{9+4 \mathrm{~m}}{\mathrm{~m}}+9+4 \mathrm{~m}$
$\because \mathrm{m}>0$
$=13+\frac{9}{\mathrm{~m}}+4 \mathrm{~m}$
$\because \frac{4 \mathrm{~m}+\frac{9}{\mathrm{~m}}}{2} \geq \sqrt{36} \Rightarrow 4 \mathrm{~m}+\frac{9}{\mathrm{~m}} \geq 12$
$\therefore \mathrm{OA}+\mathrm{OB} \geq 25$
14. The interval in which the function $f(x)=x^{x}, x>0$, is strictly increasing is
(1) $\left(0, \frac{1}{\mathrm{e}}\right]$
(2) $\left[\frac{1}{\mathrm{e}^{2}}, 1\right)$
(3) $(0, \infty)$
(4) $\left[\frac{1}{\mathrm{e}}, \infty\right)$

Ans. (4)
Sol. $f(x)=x^{x} ; x>0$
$\ln y=x \ln x$
$\frac{1}{y} \frac{d y}{d x}=\frac{x}{x}+\ln x$

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}^{\mathrm{x}}(1+\ln \mathrm{x})
$$

for strictly increasing
$\frac{d y}{d x} \geq 0 \Rightarrow x^{x}(1+\ell n x) \geq 0$
$\Rightarrow \ell \mathrm{nx} \geq-1$
$x \geq e^{-1}$
$\mathrm{x} \geq \frac{1}{\mathrm{e}}$
$x \in\left[\frac{1}{e}, \infty\right)$
15. A circle in inscribed in an equilateral triangle of side of length 12 . If the area and perimeter of any square inscribed in this circle are m and n, respectively, then $m+n^{2}$ is equal to
(1) 396
(2) 408
(3) 312
(4) 414

Ans. (2)
Sol. $\because \mathrm{r}=\frac{\Delta}{\mathrm{s}}=\frac{\sqrt{3} \mathrm{a}^{2}}{4 . \frac{3 \mathrm{a}}{2}}=\frac{\mathrm{a}}{2 \sqrt{3}}=\frac{12}{2 \sqrt{3}}=2 \sqrt{3}$

$\therefore \mathbf{A}=\mathrm{r} \sqrt{2}=2 \sqrt{6}$
Area $=m=A^{2}=24$
Perimeter $=n=4 A=8 \sqrt{6}$
$\therefore \mathrm{m}+\mathrm{n}^{2}=24+384$
$=408$
16. The number of triangles whose vertices are at the vertices of a regular octagon but none of whose sides is a side of the octagon is
(1) 24
(2) 56
(3) 16
(4) 48

Ans. (3)
Sol. \because no. of triangles having no side common with a n sided polygon $=\frac{{ }^{n} C_{1} \cdot{ }^{n-4} C_{2}}{3}$ $=\frac{{ }^{8} \mathrm{C}_{1} \cdot{ }^{4} \mathrm{C}_{2}}{3}=16$
17. Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\left(1+x^{2}\right) \frac{d y}{d x}+y=e^{\tan ^{-1} x}, y(1)=0$. Then $y(0)$ is
(1) $\frac{1}{4}\left(\mathrm{e}^{\pi / 2}-1\right)$
(2) $\frac{1}{2}\left(1-\mathrm{e}^{\pi / 2}\right)$
(3) $\frac{1}{4}\left(1-\mathrm{e}^{\pi / 2}\right)$
(4) $\frac{1}{2}\left(\mathrm{e}^{\pi / 2}-1\right)$

Ans. (2)
Sol. $\frac{d y}{d x}+\frac{y}{1+x^{2}}=\frac{e^{\tan ^{-1} x}}{1+x^{2}}$
I.F. $=\mathrm{e}^{\int \frac{1}{1+\mathrm{x}^{2}} \mathrm{dx}}=\mathrm{e}^{\tan ^{-1} \mathrm{x}}$
$y . e^{\tan ^{-1} x}=\int\left(\frac{e^{\tan ^{-1} x}}{1+x^{2}}\right) e^{\tan ^{-1} x} . d x$
Let $\tan ^{-1} \mathrm{x}=\mathrm{z} \quad \therefore \frac{\mathrm{dx}}{1+\mathrm{x}^{2}}=\mathrm{dz}$
$\therefore y . e^{z}=\int e^{2 z} d z=\frac{e^{2 z}}{2}+C$
$y . e^{\tan ^{-1} x}=\frac{e^{2 \tan ^{-1} x}}{2}+C$
$\Rightarrow y=\frac{e^{\tan ^{-1} x}}{2}+\frac{C}{e^{\tan ^{-1} x}}$
$\because y(1)=0 \Rightarrow 0=\frac{\mathrm{e}^{\pi / 4}}{2}+\frac{\mathrm{C}}{\mathrm{e}^{\pi / 4}} \Rightarrow \mathrm{C}=\frac{-\mathrm{e}^{\pi / 2}}{2}$
$\therefore y=\frac{e^{\tan ^{-1} x}}{2}-\frac{e^{\pi / 2}}{2 e^{\tan ^{-1} x}}$
$\therefore \mathrm{y}(0)=\frac{1-\mathrm{e}^{\pi / 2}}{2}$
18. Let $y=y(x)$ be the solution of the differential equation $\left(2 x \log _{e} x\right) \frac{d y}{d x}+2 y=\frac{3}{x} \log _{e} x, x>0$ and $\mathrm{y}\left(\mathrm{e}^{-1}\right)=0$. Then, $\mathrm{y}(\mathrm{e})$ is equal to
(1) $-\frac{3}{2 e}$
(2) $-\frac{2}{3 \mathrm{e}}$
(3) $-\frac{3}{e}$
(4) $-\frac{2}{\mathrm{e}}$

Ans. (3)
Sol. $\frac{d y}{d x}+\frac{y}{x \ell n \mathrm{x}}=\frac{3}{2 x^{2}}$
\therefore I.F. $=\mathrm{e}^{\int \frac{1}{\mathrm{x} \ell \mathrm{n} x} \mathrm{dx}}=\mathrm{e}^{\ln (\ln (\mathrm{x}))}=\ell \mathrm{nx}$
$\therefore \mathrm{y} \ell \mathrm{nx}=\int \frac{3 \ell \mathrm{nx}}{2 \mathrm{x}^{2}} \mathrm{dx}$
$=\frac{3 \ln x}{2} \int x^{-2} d x-\int\left(\frac{3}{2 x} \cdot \int x^{-2} d x\right) d x$
$=\frac{3 \ln x}{2}\left(-\frac{1}{x}\right)-\int \frac{3}{2 x}\left(-\frac{1}{x}\right) d x$
y. $\ln x=\frac{-3 \ln x}{2 x}-\frac{3}{2 x}+C$
$\because y\left(\mathrm{e}^{-1}\right)=0$
$\therefore 0(-1)=\frac{3 \mathrm{e}}{2}-\frac{3 \mathrm{e}}{2}+\mathrm{C} \Rightarrow \mathrm{C}=0$
$\therefore \mathrm{y}=\frac{-3 \ln \mathrm{x}}{2 \mathrm{x}}-\frac{3}{2 \mathrm{x}}$
$\therefore \mathrm{y}(\mathrm{e})=\frac{-3}{2 \mathrm{e}}-\frac{3}{2 \mathrm{e}}=\frac{-3}{\mathrm{e}}$
19. Let the area of the region enclosed by the curves $y=3 x, 2 y=27-3 x$ and $y=3 x-x \sqrt{x}$ be A. Then 10 A is equal to
(1) 184
(2) 154
(3) 172
(4) 162

Ans. (4)

Sol. $y=3 x, 2 y=27-3 x \& y=3 x-x \sqrt{x}$

$A=\int_{0}^{3} 3 x-(3 x-x \sqrt{x}) d x+\int_{3}^{9}\left(\frac{27-3 x}{2}-(3 x-x \sqrt{x})\right) d x$
$A=\int_{0}^{3} x^{3 / 2} d x+\int_{3}^{9} \frac{27}{2}-\frac{9 x}{2}+x^{3 / 2} d x$
$\mathrm{A}=\left[\frac{2 \mathrm{x}^{5 / 2}}{5}\right]_{0}^{3}+\frac{27}{2}[\mathrm{x}]_{3}^{9}-\frac{9}{2}\left[\frac{\mathrm{x}^{2}}{2}\right]_{3}^{9}+\left[\frac{2 \mathrm{x}^{5 / 2}}{5}\right]_{3}^{9}$
$\mathrm{A}=\frac{2}{5}\left(3^{5 / 2}\right)+\frac{27}{2}(6)-\frac{9}{4}(72)+\frac{2}{5}\left(9^{5 / 2}-3^{5 / 2}\right)$
$\mathrm{A}=\frac{2}{5}\left(3^{5 / 2}\right)+81-162+\frac{2}{5} \times 3^{5}-\frac{2}{5} \times 3^{5 / 2}$
$\mathrm{A}=\frac{486}{5}-81=\frac{81}{5}$

$$
10 \mathrm{~A}=162
$$

Ans. $=4$
20. Let $\mathrm{f}:(-\infty, \infty)-\{0\} \rightarrow \mathrm{R}$ be a differentiable function such that $f^{\prime}(1)=\lim _{a \rightarrow \infty} a^{2} f\left(\frac{1}{a}\right)$.

Then $\lim _{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^{2}-2 \log _{e} a$ is equal to
(1) $\frac{3}{2}+\frac{\pi}{4}$
(2) $\frac{3}{8}+\frac{\pi}{4}$
(3) $\frac{5}{2}+\frac{\pi}{8}$
(4) $\frac{3}{4}+\frac{\pi}{8}$

Ans. (3)

Sol. $\mathrm{f}:(-\infty, \infty)-\{0\} \rightarrow \mathrm{R}$
$f^{\prime}(1)=\lim _{a \rightarrow \infty} a^{2} f\left(\frac{1}{a}\right)$
$\lim _{a \rightarrow \infty} \frac{a(a+1)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+a^{2}-2 \ln (a)$
$\lim _{a \rightarrow \infty} a^{2}\left(\frac{\left(1+\frac{1}{a}\right)}{2} \tan ^{-1}\left(\frac{1}{a}\right)+1-\frac{2}{a^{2}} \ln (a)\right)$
$\mathrm{f}(\mathrm{x})=\frac{1}{2}(1+\mathrm{x}) \tan ^{-1}(\mathrm{x})+1-2 \mathrm{x}^{2} \ln (\mathrm{x})$
$f^{\prime}(x)=\frac{1}{2}\left(\frac{1+x}{1+x^{2}}+\tan ^{-1}(x)+4 x \ln (x)\right)+2 x$
$\mathrm{f}^{\prime}(1)=\frac{1}{2}\left(1+\frac{\pi}{4}\right)+2$
$\mathrm{f}^{\prime}(1)=\frac{5}{2}+\frac{\pi}{8}$
Ans. (3)

SECTION-B

21. Let $\alpha \beta \gamma=45 ; \alpha, \beta, \gamma \in R$. If $x(\alpha, 1,2)+y(1, \beta, 2)$ $+z(2,3, \gamma)=(0,0,0)$ for some $x, y, z \in R, x y z \neq$ 0 , then $6 \alpha+4 \beta+\gamma$ is equal to \qquad
Ans. (55)
Sol. $\alpha \beta \gamma=45, \alpha \beta \gamma \in \mathrm{R}$
$x(\alpha, 1,2)+y(1, \beta, 2)+z(2,3, \gamma)=(0,0,0)$
$x, y, z \in R, x y z \neq 0$
$\alpha x+y+2 z=0$
$x+\beta y+3 z=0$
$2 x+2 y+\gamma z=0$
xyz $\neq 0 \Rightarrow$ non-trivial

$$
\left|\begin{array}{lll}
\alpha & 1 & 2 \\
1 & \beta & 3 \\
2 & 2 & \gamma
\end{array}\right|=0
$$

$\Rightarrow \alpha(\beta \gamma-6)-1(\gamma-6)+2(2-2 \beta)=0$
$\Rightarrow \alpha \beta \gamma-6 \alpha-\gamma+6+4-4 \beta=0$
$\Rightarrow 6 \alpha+4 \beta+\gamma=55$
22. Let a conic C pass through the point $(4,-2)$ and $P(x, y), x \geq 3$, be any point on C. Let the slope of the line touching the conic C only at a single point P be half the slope of the line joining the points P and $(3,-5)$. If the focal distance of the point $(7,1)$ on C is d , then 12 d equals \qquad -.
Ans. (75)
Sol. $\mathrm{P}(\mathrm{x}, \mathrm{y}) \& \mathrm{x} \geq 3$
Slope of line at $\mathrm{P}(\mathrm{x}, \mathrm{y})$ will be $\frac{\mathrm{dy}}{d \mathrm{x}}=\frac{1}{2}\left(\frac{\mathrm{y}+5}{\mathrm{x}-3}\right)$
$\Rightarrow 2 \frac{d y}{(y+5)}=\frac{1}{(x-3)} d x$
$\Rightarrow 2 \ell \mathrm{n}(\mathrm{y}+5)=\ln (\mathrm{x}-3)+\mathrm{C}$
Passes through $(4,-2)$
$\Rightarrow 2 \ln (3)=\ln (1)+C$
$\Rightarrow \mathrm{C}=2 \ln (3)$
$\Rightarrow 2 \ell \mathrm{n}(\mathrm{y}+5)=\ell \mathrm{n}(\mathrm{x}-3)+2 \ln (3)$
$\Rightarrow 2\left(\ln \left(\frac{\mathrm{y}+5}{3}\right)\right)=\ln (\mathrm{x}-3)$
$\Rightarrow\left(\frac{\mathrm{y}+5}{3}\right)^{2}=(\mathrm{x}-3)$
$\Rightarrow(\mathrm{y}+5)^{2}=9(\mathrm{x}-3)$

Parabola
$4 a=9$
$\mathrm{a}=\frac{9}{4}$

$d=\sqrt{\left(\frac{7}{4}\right)^{2}+6^{2}}$
$d=\frac{\sqrt{625}}{4}$
$\mathrm{d}=\frac{25}{4}$
$12 \mathrm{~d}=75$
23. Let $r_{k}=\frac{\int_{0}^{1}\left(1-x^{7}\right)^{k} d x}{\int_{0}^{1}\left(1-x^{7}\right)^{k+1} d x}, k \in N$. Then the value of
$\sum_{\mathrm{k}=1}^{10} \frac{1}{7\left(\mathrm{r}_{\mathrm{k}}-1\right)}$ is equal to \qquad $-$

Ans. (65)
Sol. $\quad I_{K}=\int 1 .\left(1-x^{7}\right)^{K} d x$
$I_{K}=\left.\left(1-x^{7}\right)^{K} x\right|_{0} ^{1}+7 K \int_{0}^{1}\left(1-x^{7}\right)^{K-1} x^{6} \cdot x d x$
$I_{K}=-7 K \int_{0}^{1}\left(1-x^{7}\right)^{K-1}\left(\left(1-x^{7}\right)-1\right) d x$
$\mathrm{I}_{\mathrm{K}}=-7 \mathrm{~K} \mathrm{I}_{\mathrm{K}}+7 \mathrm{~K} \mathrm{I}_{\mathrm{K}-1}$
$\Rightarrow \frac{\mathrm{I}_{\mathrm{K}}}{\mathrm{I}_{\mathrm{K}+1}}=\frac{7 \mathrm{~K}+8}{7 \mathrm{~K}+7}$
$\mathrm{r}_{\mathrm{K}}=\frac{7 \mathrm{~K}+8}{7 \mathrm{~K}+7}$
$\mathrm{r}_{\mathrm{K}}-1=\frac{1}{7(\mathrm{~K}+1)}$
$\Rightarrow 7\left(\mathrm{r}_{\mathrm{K}}-1\right)=\frac{1}{\mathrm{~K}+1}$
$\sum_{K=1}^{10}(K+1)=11(6)-1=65$
24. Let $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}$ be the solution of the equation
$4 x^{4}+8 x^{3}-17 x^{2}-12 x+9=0$ and
$\left(4+x_{1}^{2}\right)\left(4+x_{2}^{2}\right)\left(4+x_{3}^{2}\right)\left(4+x_{4}^{2}\right)=\frac{125}{16} m$.
Then the value of m is \qquad .

Ans. (221)
Sol. $4 \mathrm{x}^{4}+8 \mathrm{x}^{3}-17 \mathrm{x}^{2}-12 \mathrm{x}+9$
$=4\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)$
Put $\mathrm{x}=2 \mathrm{i} \&-2 \mathrm{i}$
$64-64 \mathrm{i}+68-24 \mathrm{i}+9=\left(2 \mathrm{i}-\mathrm{x}_{1}\right)\left(2 \mathrm{i}-\mathrm{x}_{2}\right)\left(2 \mathrm{i}-\mathrm{x}_{3}\right)$
$\left(2 i-x_{4}\right)$
$=141-88 \mathrm{i}$
$64+64 \mathrm{i}+68+24 \mathrm{i}+9=4\left(-2 \mathrm{i}-\mathrm{x}_{1}\right)\left(-2 \mathrm{i}-\mathrm{x}_{2}\right)(-2 \mathrm{i}$
$\left.-\mathrm{x}_{3}\right)\left(-2 \mathrm{i}-\mathrm{x}_{4}\right)$
$=141+88 \mathrm{i}$
$\frac{125}{16} m=\frac{141^{2}+88^{2}}{16}$
$m=221$
25. Let L_{1}, L_{2} be the lines passing through the point $\mathrm{P}(0,1)$ and touching the parabola
$9 x^{2}+12 x+18 y-14=0$. Let Q and R be the points on the lines L_{1} and L_{2} such that the $\triangle P Q R$ is an isosceles triangle with base QR . If the slopes of the lines $Q R$ are m_{1} and m_{2}. then $16\left(m_{1}^{2}+m_{2}^{2}\right)$ is equal to \qquad .

Ans. (68)
Sol. $\quad 9 x^{2}+12 x+4=-18(y-1)$
$(3 x+2)^{2}=-18(y-1)$
$\left(x+\frac{2}{3}\right)^{2}=-2(y-1)$
$=-\cot \frac{\theta}{2}$
$\mathrm{m}_{1}=\frac{-1}{2}$
$\mathrm{m}_{2}=\frac{-1}{-1 / 2}=2$
$16\left(\mathrm{~m}_{1}^{2}+\mathrm{m}_{2}^{2}\right)=16\left(\frac{1}{4}+4\right)$
$=4+64=68$
26. If the second, third and fourth terms in the expansion of $(x+y)^{\mathrm{n}}$ are 135,30 and $\frac{10}{3}$, respectively, then $6\left(\mathrm{n}^{3}+\mathrm{x}^{2}+\mathrm{y}\right)$ is equal to
\qquad -.
Ans. (806)
Sol. ${ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{x}^{\mathrm{n}-1} \mathrm{y}=135$
${ }^{n} C_{2} x^{n-2} y^{2}=30$
${ }^{1} C_{3} x^{n-5} y^{3}=\frac{10}{3}$
By $\frac{(\mathrm{i})}{(\mathrm{ii})}$
$\frac{{ }^{n} C_{1}}{{ }^{n} C_{2}} \frac{x}{y}=\frac{9}{2}$
By $\frac{(i i)}{(i i i)}$
$\frac{{ }^{n} C_{2}}{{ }^{n} C_{3}} \frac{x}{y}=9$
By $\frac{\text { (iv) }}{(\mathrm{v})}$
$\frac{{ }^{\mathrm{n}} \mathrm{C}_{1}{ }^{\mathrm{n}} \mathrm{C}_{3}}{{ }^{\mathrm{n}} \mathrm{C}_{2}{ }^{\mathrm{n}} \mathrm{C}_{2}}=\frac{1}{2}$
$\frac{2 n^{2}(n-1)(n-2)}{6}=\frac{n(n-1)}{2} \frac{n(n-1)}{2}$
$4 n-8=3 n-3$
$\Rightarrow \mathrm{n}=5$
put in (v)

Download the new ALLEN app \& enroll for Online Programs

$\frac{x}{y}=9$
$x=9 y$
put in (i)
${ }^{5} \mathrm{C}_{1} \mathrm{x}^{4}\left(\frac{\mathrm{x}}{9}\right)=135$
$x^{5}=27 \times 9$
$\Rightarrow \mathrm{x}=3, \quad \mathrm{y}=\frac{1}{3}$
$6\left(n^{3}+x^{2}+y\right)$
$=6\left(125+9+\frac{1}{3}\right)$
$=806$
27. Let the first term of a series be $\mathrm{T}_{1}=6$ and its $\mathrm{r}^{\text {th }}$ term $T_{r}=3 T_{r-1}+6^{r}, r=2,3, \ldots . ., n$. If the sum of the first n terms of this series is $\frac{1}{5}\left(\mathrm{n}^{2}-12 \mathrm{n}+39\right)$ $\left(4.6^{\mathrm{n}}-5.3^{\mathrm{n}}+1\right)$. Then n is equal to \qquad .

Ans. (6)
Sol. $\mathrm{T}_{\mathrm{r}}=3 \mathrm{~T}_{\mathrm{r}-1}+6^{\mathrm{r}}, \mathrm{r}=2,3,4, \ldots \mathrm{n}$
$\mathrm{T}_{2}=3 . \mathrm{T}_{1}+6^{2}$
$\mathrm{T}_{2}=3.6+6^{2}$
$\mathrm{T}_{3}=3 \mathrm{~T}_{2}+6^{3}$
$\mathrm{T}_{3}=3 \mathrm{~T}_{2}+6^{3}$
$\mathrm{T}_{3}=3\left(3.6+6^{2}\right)+6^{3}$
$\mathrm{T}_{3}=3^{2} .6+3.6^{2}+6^{3}$
$\mathrm{T}_{\mathrm{r}}=3^{\mathrm{r}-1} \cdot 6+3^{\mathrm{r}-2} \cdot 6^{2}+\ldots+6^{\mathrm{r}}$
$\mathrm{T}_{\mathrm{r}}=3^{\mathrm{r}-1} \cdot 6\left[1+\frac{6}{3}+\left(\frac{6}{3}\right)^{2}+\ldots+\left(\frac{6}{3}\right)^{\mathrm{r}-1}\right]$
$\mathrm{T}_{\mathrm{r}}=3^{\mathrm{r}-1} \cdot 6\left(1+2+2^{2}+\ldots+2^{\mathrm{r}-1}\right)$
$\mathrm{T}_{\mathrm{r}}=6 \cdot 3^{\mathrm{r}-1} 1 \cdot \frac{\left(1-2^{\mathrm{r}}\right)}{(-1)}$
$\mathrm{T}_{\mathrm{r}}=6.3^{\mathrm{r}-1} .\left(2^{\mathrm{r}}-1\right)$
$\mathrm{T}_{\mathrm{r}}=\frac{6 \cdot 3^{\mathrm{r}}}{3} .\left(2^{\mathrm{r}}-1\right)$
$\mathrm{T}_{\mathrm{r}}=2 .\left(6^{\mathrm{r}}-3^{\mathrm{r}}\right)$
$\mathrm{S}_{\mathrm{n}}=2 \Sigma\left(6^{\mathrm{r}}-3^{\mathrm{r}}\right)$
$\mathrm{S}_{\mathrm{n}}=2 \cdot\left[\frac{6 \cdot\left(6^{\mathrm{n}}-1\right)}{5}-\frac{3 \cdot\left(3^{\mathrm{n}}-1\right)}{2}\right]$
$\mathrm{S}_{\mathrm{n}}=2\left[\frac{12\left(6^{\mathrm{n}}-1\right)-15\left(3^{\mathrm{n}}-1\right)}{10}\right]$
$\mathrm{S}_{\mathrm{n}}=\frac{3}{5}\left[4.6^{4}-5.3^{\mathrm{n}}+1\right]$
$\therefore n^{2}-12 n+39=3$
$\mathrm{n}^{2}-12 \mathrm{n}+36=0$
$\mathrm{n}=6$
28. For $\mathrm{n} \in \mathrm{N}$, if $\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5+\cot ^{1} \mathrm{n}=\frac{\pi}{4}$, then n is equal to \qquad .
Ans. (47)
Sol. $\cot ^{-1} 3+\cot ^{-1} 4+\cot ^{-1} 5+\cot ^{1} n=\frac{\pi}{4}$
$\tan ^{-1} \frac{1}{3}+\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{1}{5}+\tan ^{-1} \frac{1}{\mathrm{n}}=\frac{\pi}{4}$
$\tan ^{-1}\left(\frac{46}{48}\right)+\tan ^{-1} \frac{1}{n}=\frac{\pi}{4}$
$\tan ^{-1}\left(\frac{23}{24}\right)+\tan ^{-1} \frac{1}{\mathrm{n}}=\frac{\pi}{4}$
$\tan ^{-1} \frac{1}{\mathrm{n}}=\tan ^{-1} 1-\tan ^{-1} \frac{23}{24}$
$\tan ^{-1} \frac{1}{\mathrm{n}}=\tan ^{-1}\left(\frac{1-\frac{23}{24}}{1+\frac{23}{24}}\right)$
$\tan ^{-1} \frac{1}{\mathrm{n}}=\tan ^{-1}\left(\frac{\frac{1}{24}}{\frac{47}{24}}\right)$
$\tan ^{-1} \frac{1}{\mathrm{n}}=\tan ^{-1} \frac{1}{47}$
$\mathrm{n}=47$

$$
\begin{aligned}
& \Rightarrow \quad-13 \vec{a}-16 \vec{b}-3 \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k}) \\
& \Rightarrow \quad-13 \vec{a} \cdot \vec{b}-16 b^{2}-3 \vec{b} \cdot \vec{c}=\{\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})\} \cdot \vec{b}
\end{aligned}
$$

$$
\Rightarrow \quad(-13)(-26)-16(50)-3 \overrightarrow{\mathrm{~b}} \cdot \overrightarrow{\mathrm{c}}=\left|\begin{array}{ccc}
2 & -3 & 4 \\
1 & 8 & 13 \\
3 & 4 & -5
\end{array}\right|
$$

$$
\Rightarrow \quad-462-3 \vec{b} \cdot \vec{c}=-396
$$

$$
\Rightarrow \quad \overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=-22
$$

Hence $24-\overrightarrow{\mathrm{b}} \cdot \overrightarrow{\mathrm{c}}=46$
30. Let $\vec{a}=2 \hat{i}-3 \hat{j}+4 \hat{k}, \vec{b}=3 \hat{i}+4 \hat{j}-5 \hat{k}$, and a vector $\overrightarrow{\mathrm{c}}$ be such that $\overrightarrow{\mathrm{a}} \times(\overrightarrow{\mathrm{b}}+\overrightarrow{\mathrm{c}})+\overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}=\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{\mathrm{k}}$ If $\vec{a} \cdot \vec{c}=13$, then $(24-\vec{b} \cdot \vec{c})$ is equal to \qquad .

Ans. (46)
Sol. $\vec{a} \times \vec{b}+\vec{a} \times \vec{c}+\vec{b} \times \vec{c}=(1,8,13)$
$\vec{a} \times(\vec{a} \times \vec{b})+\vec{a} \times(\vec{a} \times \vec{c})+\vec{a} \times(\vec{b} \times \vec{c})$
$=\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{\mathrm{k}})$
$(\vec{a} \cdot \vec{b}) \vec{a}-a^{2} \vec{b}+(\vec{a} \cdot \vec{c}) \vec{a}-a^{2} \vec{c}+(\vec{a} \cdot \vec{c}) \vec{b}-(\vec{a} \cdot \vec{b}) \vec{c}=\vec{a} \times(\hat{i}+8 \hat{j}+13 \hat{k})$
$\Rightarrow-26 \vec{a}-29 \vec{b}+13 \vec{a}-29 \overrightarrow{\mathrm{c}}+13 \overrightarrow{\mathrm{~b}}+26 \overrightarrow{\mathrm{c}}=\overrightarrow{\mathrm{a}} \times(\hat{\mathrm{i}}+8 \hat{\mathrm{j}}+13 \hat{k})$

