OVERSEAS
FINAL JEE-MAIN EXAMINATION - APRIL, 2024
(Held On Monday 08 ${ }^{\text {th }}$ April, 2024)
TIME : 9: 00 AM to 12: 00 NOON

PHYSICS

SECTION-A

31. Three bodies A, B and C have equal kinetic energies and their masses are $400 \mathrm{~g}, 1.2 \mathrm{~kg}$ and 1.6 kg respectively. The ratio of their linear momenta is :
(1) $1: \sqrt{3}: 2$
(2) $1: \sqrt{3}: \sqrt{2}$
(3) $\sqrt{2}: \sqrt{3}: 1$
(4) $\sqrt{3}: \sqrt{2}: 1$

Ans. (1)
Sol. $\mathrm{KE}=\frac{\mathrm{P}^{2}}{2 \mathrm{~m}}$
$\mathrm{P} \propto \sqrt{\mathrm{m}}$
Hence, $\mathrm{P}_{\mathrm{A}}: \mathrm{P}_{\mathrm{B}}: \mathrm{P}_{\mathrm{C}}$
$=\sqrt{400}: \sqrt{1200}: \sqrt{1600}=1: \sqrt{3}: 2$
32. Average force exerted on a non-reflecting surface at normal incidence is $2.4 \times 10^{-4} \mathrm{~N}$. If $360 \mathrm{~W} / \mathrm{cm}^{2}$ is the light energy flux during span of 1 hour 30 minutes. Then the area of the surface is:
(1) $0.2 \mathrm{~m}^{2}$
(2) $0.02 \mathrm{~m}^{2}$
(3) $20 \mathrm{~m}^{2}$
(4) $0.1 \mathrm{~m}^{2}$

Ans. (2)
Sol. Pressure $=\frac{I}{C}=\frac{F}{A}$
$\Rightarrow \frac{360}{10^{-4} \times 3 \times 10^{8}}=\frac{2.4 \times 10^{-4}}{\mathrm{~A}}$
$\Rightarrow \mathrm{A}=2 \times 10^{-2} \mathrm{~m}^{2}=0.02 \mathrm{~m}^{2}$
33. A proton and an electron are associated with same de-Broglie wavelength. The ratio of their kinetic energies is:
(Assume $\mathrm{h}=6.63 \times 10^{-34} \mathrm{~J} \mathrm{~s}, \mathrm{~m}_{\mathrm{e}}=9.0 \times 10^{-31} \mathrm{~kg}$ and $m_{p}=1836$ times m_{e})
(1) $1: 1836$
(2) $1: \frac{1}{1836}$
(3) $1: \frac{1}{\sqrt{1836}}$
(4) $1: \sqrt{1836}$

TEST PAPER WITH SOLUTION

Ans. (1)
Sol. λ is same for both
$\mathrm{P}=\frac{\mathrm{h}}{\lambda}$ same for both
$\mathrm{P}=\sqrt{2 \mathrm{mK}}$
Hence,
$\mathrm{K} \propto \frac{1}{\mathrm{~m}}$
$\Rightarrow \frac{\mathrm{KE}_{\mathrm{p}}}{\mathrm{KE}_{\mathrm{e}}}=\frac{\mathrm{m}_{\mathrm{e}}}{\mathrm{m}_{\mathrm{p}}}=\frac{1}{1836}$
34. A mixture of one mole of monoatomic gas and one mole of a diatomic gas (rigid) are kept at room temperature $\left(27^{\circ} \mathrm{C}\right)$. The ratio of specific heat of gases at constant volume respectively is:
(1) $\frac{7}{5}$
(2) $\frac{3}{2}$
(3) $\frac{3}{5}$
(4) $\frac{5}{3}$

Ans. (3)
Sol. $\frac{\left(\mathrm{C}_{\mathrm{v}}\right)_{\text {mono }}}{\left(\mathrm{C}_{\mathrm{v}}\right)_{\text {dia }}}=\frac{\frac{3}{2} \mathrm{R}}{\frac{5}{2} \mathrm{R}}=\frac{3}{5}$
35. In an expression $\mathrm{a} \times 10^{\mathrm{b}}$:
(1) a is order of magnitude for $\mathrm{b} \leq 5$
(2) b is order of magnitude for $\mathrm{a} \leq 5$
(3) b is order of magnitude for $5<a \leq 10$
(4) b is order of magnitude for $a \geq 5$

Ans. (2)
Sol. $\mathrm{a} \times 10^{\mathrm{b}}$
if $\mathrm{a} \leq 5$ order is b $a>5$ order is $b+1$

Choose the most appropriate answer from the options given below:
(1) A, B, C, D
(2) B, D Only
(3) A, B, C Only
(4) A, C Only

Ans. (4)
Sol. A, C only
39. A clock has $75 \mathrm{~cm}, 60 \mathrm{~cm}$ long second hand and minute hand respectively. In 30 minutes duration the tip of second hand will travel x distance more than the tip of minute hand. The value of x in meter is nearly (Take $\pi=3.14$) :
(1) 139.4
(2) 140.5
(3) 220.0
(4) 118.9

Ans. (1)
Sol. $X_{\text {min }}=\pi \times r_{\text {min }}$

$$
=\pi \times \frac{60}{100} \mathrm{~m} .
$$

$\mathrm{x}_{\text {second }}=30 \times 2 \pi \times \mathrm{r}_{\text {second }}$

$$
=30 \times 2 \pi \times \frac{75}{100}
$$

$$
\begin{aligned}
\mathrm{x} & =\mathrm{x}_{\mathrm{sec} \text { ond }}-\mathrm{x}_{\mathrm{min}} \\
& =139.4 \mathrm{~m}
\end{aligned}
$$

40. Young's modulus is determined by the equation given by $\mathrm{Y}=49000 \frac{\mathrm{~m}}{\ell} \frac{\text { dyne }}{\mathrm{cm}^{2}}$ where M is the mass and ℓ is the extension of wire used in the experiment. Now error in Young modules(Y) is estimated by taking data from $\mathrm{M}-\ell$ plot in graph paper. The smallest scale divisions are 5 g and 0.02 cm along load axis and extension axis respectively. If the value of M and ℓ are 500 g and 2 cm respectively then percentage error of Y is :
(1) 0.2%
(2) 0.02%
(3) 2%
(4) 0.5%

Ans. (3)

Sol. $\frac{\Delta \mathrm{Y}}{\mathrm{Y}}=\frac{\Delta \mathrm{m}}{\mathrm{m}}+\frac{\Delta \ell}{\ell}$

$$
\begin{aligned}
& =\frac{5}{500}+\frac{0.02}{2}=0.01+0.01 \\
\frac{\Delta Y}{Y} & =0.02 \Rightarrow \% \frac{\Delta Y}{Y}=2 \%
\end{aligned}
$$

41. Two different adiabatic paths for the same gas intersect two isothermal curves as shown in P-V diagram. The relation between the ratio $\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{d}}}$ and the ratio $\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{c}}}$ is:

(1) $\frac{V_{a}}{V_{d}}=\left(\frac{V_{b}}{V_{c}}\right)^{-1}$
(2) $\frac{V_{a}}{V_{d}} \neq \frac{V_{b}}{V_{c}}$
(3) $\frac{V_{a}}{V_{d}}=\frac{V_{b}}{V_{c}}$
(4) $\frac{V_{a}}{V_{d}}=\left(\frac{V_{b}}{V_{c}}\right)^{2}$
V
Ans. (3)
Sol. For adiabatic process
$\mathrm{TV}^{\gamma-1}=$ constant
$\mathrm{T}_{\mathrm{a}} \cdot \mathrm{V}_{\mathrm{a}}^{\gamma-1}=\mathrm{T}_{\mathrm{d}} \cdot \mathrm{V}_{\mathrm{d}}^{\gamma-1}$
$\left(\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{d}}}\right)^{\gamma-1}=\frac{\mathrm{T}_{\mathrm{d}}}{\mathrm{T}_{\mathrm{a}}}$
$\mathrm{T}_{\mathrm{b}} \cdot \mathrm{V}_{\mathrm{b}}^{\gamma-1}=\mathrm{T}_{\mathrm{c}} \cdot \mathrm{V}_{\mathrm{c}}^{\gamma-1}$
$\left(\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{c}}}\right)^{\gamma-1}=\frac{\mathrm{T}_{\mathrm{c}}}{\mathrm{T}_{\mathrm{b}}}$
$\frac{\mathrm{V}_{\mathrm{a}}}{\mathrm{V}_{\mathrm{d}}}=\frac{\mathrm{V}_{\mathrm{b}}}{\mathrm{V}_{\mathrm{c}}} \quad\binom{\because \mathrm{T}_{\mathrm{d}}=\mathrm{T}_{\mathrm{c}}}{\mathrm{T}_{\mathrm{a}}=\mathrm{T}_{\mathrm{b}}}$
42. Two planets A and B having masses m_{1} and m_{2} move around the sun in circular orbits of r_{1} and r_{2} radii respectively. If angular momentum of A is L and that of B is $3 L$, the ratio of time period $\left(\frac{T_{A}}{T_{B}}\right)$ is:
(1) $\left(\frac{r_{2}}{r_{1}}\right)^{\frac{3}{2}}$
(2) $\left(\frac{r_{1}}{r_{2}}\right)^{3}$
(3) $\frac{1}{27}\left(\frac{m_{2}}{m_{1}}\right)^{3}$
(4) $27\left(\frac{m_{1}}{m_{2}}\right)^{3}$

Ans. (3)
Sol. $\frac{\pi \mathrm{r}_{1}^{2}}{\mathrm{~T}_{\mathrm{A}}}=\frac{\mathrm{L}}{2 \mathrm{~m}_{1}}$
$\frac{\pi \mathrm{r}_{2}^{2}}{\mathrm{~T}_{\mathrm{B}}}=\frac{3 \mathrm{~L}}{2 \mathrm{~m}_{2}} \ldots \ldots$.
$\Rightarrow \frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}=3 \cdot \frac{\mathrm{~m}_{1}}{\mathrm{~m}_{2}} \cdot\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2}$
$\left(\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}\right)^{2}=\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{3} \Rightarrow\left(\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}}\right)^{2}=\left(\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}\right)^{\frac{4}{3}}$
$\Rightarrow \frac{1}{27} \cdot\left(\frac{\mathrm{~m}_{2}}{\mathrm{~m}_{1}}\right)^{3}=\left(\frac{\mathrm{T}_{\mathrm{A}}}{\mathrm{T}_{\mathrm{B}}}\right)$
43. A LCR circuit is at resonance for a capacitor C , inductance L and resistance R. Now the value of resistance is halved keeping all other parameters same. The current amplitude at resonance will be now:
(1) Zero
(2) double
(3) same
(4) halved

Ans. (2)
Sol. In resonance $\mathrm{Z}=\mathrm{R}$
$I=\frac{V}{R}$
$\mathrm{R} \rightarrow$ halved
$\Rightarrow \mathrm{I} \rightarrow 2 \mathrm{I}$
I becomes doubled.

Download the new ALLEN app \& enroll for Online Programs

44. The output Y of following circuit for given inputs is :

(1) $A \cdot B(A+B)$
(2) A • B
(3) 0
(4) $\bar{A} \cdot B$

Ans. (3)
Sol. By truth table

A	B	Y
0	0	0
0	1	0
1	0	0
1	1	0

45. Two charged conducting spheres of radii a and b are connected to each other by a conducting wire. The ratio of charges of the two spheres respectively is:
(1) $\sqrt{a b}$
(2) ab
(3) $\frac{a}{b}$
(4) $\frac{b}{a}$

Ans. (3)
Sol. Potential at surface will be same
$\frac{\mathrm{Kq}_{1}}{\mathrm{a}}=\frac{\mathrm{Kq}_{2}}{\mathrm{~b}}$
$\frac{\mathrm{q}_{1}}{\mathrm{q}_{2}}=\frac{\mathrm{a}}{\mathrm{b}}$
46. Correct Bernoulli's equation is (symbols have their usual meaning) :
(1) $\mathrm{P}+\mathrm{mgh}+\frac{1}{2} \mathrm{mv}^{2}=\mathrm{constant}$
(2) $\mathrm{P}+\rho g \mathrm{gh}+\frac{1}{2} \rho v^{2}=\mathrm{constant}$
(3) $\mathrm{P}+\rho g h+\rho v^{2}=\mathrm{constant}$
(4) $P+\frac{1}{2} \rho g h+\frac{1}{2} \rho v^{2}=$ constant

Ans. (2)
Sol. $\quad \mathrm{P}+\rho \mathrm{gh}+\frac{1}{2} \rho V^{2}=$ constant
47. A player caught a cricket ball of mass 150 g moving at a speed of $20 \mathrm{~m} / \mathrm{s}$. If the catching process is completed in 0.1 s , the magnitude of force exerted by the ball on the hand of the player is:
(1) 150 N
(2) 3 N
(3) 30 N
(4) 300 N

Ans. (3)
Sol. $\mathrm{F}=\frac{\Delta \mathrm{P}}{\Delta \mathrm{t}}=\frac{\mathrm{mv}-0}{0.1}$
$=\frac{150 \times 10^{-3} \times 20}{0.1}=30 \mathrm{~N}$
48. A stationary particle breaks into two parts of masses m_{A} and m_{B} which move with velocities v_{A} and v_{B} respectively. The ratio of their kinetic energies $\left(K_{B}: K_{A}\right)$ is :
(1) $\mathrm{v}_{\mathrm{B}}: \mathrm{v}_{\mathrm{A}}$
(2) $m_{B}: m_{A}$
(3) $m_{B} v_{B}: m_{A} v_{A}$
(4) $1: 1$

Ans. (1)
Sol. Initial momentum is zero.
Hence $\left|\mathrm{P}_{\mathrm{A}}\right|=\left|\mathrm{P}_{\mathrm{B}}\right|$
$\Rightarrow \mathrm{m}_{\mathrm{A}} \mathrm{V}_{\mathrm{B}}=\mathrm{m}_{\mathrm{B}} \mathrm{V}_{\mathrm{B}}$
$\frac{(\mathrm{KE})_{\mathrm{A}}}{(\mathrm{KE})_{\mathrm{B}}}=\frac{\frac{1}{2} \mathrm{~m}_{\mathrm{A}} \mathrm{v}_{\mathrm{A}}^{2}}{\frac{1}{2} \mathrm{~m}_{\mathrm{B}} \mathrm{v}_{\mathrm{B}}^{2}}=\frac{\mathrm{v}_{\mathrm{A}}}{\mathrm{v}_{\mathrm{B}}}$
$\frac{(\mathrm{KE})_{\mathrm{B}}}{(\mathrm{KE})_{\mathrm{A}}}=\frac{\mathrm{v}_{\mathrm{B}}}{\mathrm{v}_{\mathrm{A}}}$
49. Critical angle of incidence for a pair of optical media is 45°. The refractive indices of first and second media are in the ratio:
(1) $\sqrt{2}: 1$
(2) $1: 2$
(3) $1: \sqrt{2}$
(4) $2: 1$

Ans. (1)

Sol. $\quad \sin \theta_{c}=\frac{\mu_{R}}{\mu_{d}}=\frac{\mu_{2}}{\mu_{1}}$
$\sin 45^{\circ}=\frac{\mu_{2}}{\mu_{1}}$
$\Rightarrow \frac{1}{\sqrt{2}}=\frac{\mu_{2}}{\mu_{1}}$
$\Rightarrow \frac{\mu_{1}}{\mu_{2}}=\frac{\sqrt{2}}{1}$
50. The diameter of a sphere is measured using a vernier caliper whose 9 divisions of main scale are equal to 10 divisions of vernier scale. The shortest division on the main scale is equal to 1 mm . The main scale reading is 2 cm and second division of vernier scale coincides with a division on main scale. If mass of the sphere is 8.635 g , the density of the sphere is:
(1) $2.5 \mathrm{~g} / \mathrm{cm}^{3}$
(2) $1.7 \mathrm{~g} / \mathrm{cm}^{3}$
(3) $2.2 \mathrm{~g} / \mathrm{cm}^{3}$
(4) $2.0 \mathrm{~g} / \mathrm{cm}^{3}$

Ans. (4)
Sol. Given $9 \mathrm{MSD}=10 \mathrm{VSD}$
mass $=8.635 \mathrm{~g}$
$\mathrm{LC}=1 \mathrm{MSD}-1 \mathrm{VSD}$
$\mathrm{LC}=1 \mathrm{MSD}-\frac{9}{10} \mathrm{MSD}$
$\mathrm{LC}=\frac{1}{10} \mathrm{MSD}$
$\mathrm{LC}=0.01 \mathrm{~cm}$
Reading of diameter $=\mathrm{MSR}+\mathrm{LC} \times \mathrm{VSR}$

$$
\begin{aligned}
& =2 \mathrm{~cm}+(0.01) \times(2) \\
& =2.02 \mathrm{~cm}
\end{aligned}
$$

Volume of sphere $=\frac{4}{3} \pi\left(\frac{\mathrm{~d}}{2}\right)^{3}=\frac{4}{3} \pi\left(\frac{2.02}{2}\right)^{3}$

$$
=4.32 \mathrm{~cm}^{3}
$$

Density $=\frac{\text { mass }}{\text { volume }}=\frac{8.635}{4.32}=1.998 \sim 2.00 \mathrm{~g}$

SECTION-B

51. A uniform thin metal plate of mass 10 kg with dimensions is shown. The ratio of x and y coordinates of center of mass of plate in $\frac{n}{9}$. The value of n is \qquad .

Ans. (15)
Sol. $\mathrm{m}_{1}=\sigma \times 5=10 \mathrm{Kg}$

$\Rightarrow \mathrm{m}_{1} \mathrm{x}_{1}+\mathrm{m}_{2} \mathrm{x}_{2}=\mathrm{m}_{3} \mathrm{x}_{3}$

$$
10 x_{1}+2(1.5)=12(1.5) \Rightarrow x_{1}=1.5 \mathrm{~cm}
$$

$\Rightarrow \mathrm{m}_{1} \mathrm{y}_{1}+\mathrm{m}_{2} \mathrm{y}_{2}=\mathrm{m}_{3} \mathrm{y}_{3}$

$$
10 \mathrm{y}_{1}+2(1.5)=12 \times 1 \Rightarrow \mathrm{y}_{1}=0.9 \mathrm{~cm}
$$

$\frac{x_{1}}{y_{1}}=\frac{1.5}{0.9}=\frac{15}{9}$
$\mathrm{n}=15$
$\mathrm{W}=\mathrm{F} \times \ell=\frac{\mathrm{N}^{2} \mathrm{~B}^{2} \ell^{3}}{\mathrm{R}}\left(\frac{\ell}{\mathrm{t}}\right)$ region of uniform magnetic field of $3 \mu \mathrm{~T}$ perpendicular to its direction. An electric field E is applied perpendicular to the direction of velocity and magnetic field. The value of E , so that electron moves along the same path, is \qquad NC^{-1}.
(Given, mass of electron $=9 \times 10^{-31} \mathrm{~kg}$, electric charge $=1.6 \times 10^{-19} \mathrm{C}$)
Ans. (4)
Sol. For the given condition of moving undeflected, net force should be zero.
$\mathrm{qE}=\mathrm{qVB}$
$\mathrm{E}=\mathrm{VB}$

$$
\begin{aligned}
& =\sqrt{\frac{2 \times \mathrm{KE}}{\mathrm{~m}}} \times \mathrm{B} \\
& =\sqrt{\frac{2 \times 5 \times 1.6 \times 10^{-19}}{9 \times 10^{-31}}} \times 3 \times 10^{-6} \\
& =4 \mathrm{~N} / \mathrm{C}
\end{aligned}
$$

53. A square loop PQRS having 10 turns, area $3.6 \times$ $10^{-3} \mathrm{~m}^{2}$ and resistance 100Ω is slowly and uniformly being pulled out of a uniform magnetic field of magnitude $B=0.5 \mathrm{~T}$ as shown. Work done in pulling the loop out of the field in 1.0 s is
\qquad $\times 10^{-6} \mathrm{~J}$.

Ans. (3)
Sol. $\in=\mathrm{NB} \ell \mathrm{v}$

$$
\begin{aligned}
& i=\frac{\epsilon}{R}=\frac{N B \ell v}{R} \\
& F=N(i \ell B)=\frac{N^{2} B^{2} \ell^{2} v}{R}
\end{aligned}
$$

$\mathrm{A}=\ell^{2}$
$\mathrm{W}=\frac{(10 \times 10)(0.5)^{2} \times\left(3.6 \times 10^{-3}\right)^{2}}{100 \times 1}$
$\mathrm{W}=3.24 \times 10^{-6} \mathrm{~J}$
54. Resistance of a wire at $0^{\circ} \mathrm{C}, 100{ }^{\circ} \mathrm{C}$ and $\mathrm{t}{ }^{\circ} \mathrm{C}$ is found to be $10 \Omega, 10.2 \Omega$ and 10.95Ω respectively. The temperature t in Kelvin scale is \qquad .

Ans. (748)
Sol. $\mathrm{R}=\mathrm{R}_{0}(1+\alpha \Delta \mathrm{T})$
$\frac{\Delta \mathrm{R}}{\mathrm{R}_{0}}=\alpha \Delta \mathrm{T}$

Case-I

$0^{\circ} \mathrm{C} \rightarrow 100^{\circ} \mathrm{C}$
$\frac{10.2-10}{10}=\alpha(100-0)$

Case-II

$0^{\circ} \mathrm{C} \rightarrow \mathrm{t}^{\circ} \mathrm{C}$
$\frac{10.95-10}{10}=\alpha(\mathrm{t}-0)$
$\Rightarrow \frac{\mathrm{t}}{100}=\frac{0.95}{0.2}=475^{\circ} \mathrm{C}$
$\mathrm{t}=475+273=748 \mathrm{~K}$
55. An electric field, $\overrightarrow{\mathrm{E}}=\frac{2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}}{\sqrt{6}}$ passes through the surface of $4 \mathrm{~m}^{2}$ area having unit vector $\hat{\mathrm{n}}=\left(\frac{2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{6}}\right)$. The electric flux for that surface is \qquad V m.

Ans. (12)
Sol. $\phi=\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{A}}$

$$
\begin{aligned}
& =\left(\frac{2 \hat{\mathrm{i}}+6 \hat{\mathrm{j}}+8 \hat{\mathrm{k}}}{\sqrt{6}}\right) \cdot 4\left(\frac{2 \hat{\mathrm{i}}+\hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{6}}\right) \\
& =\frac{4}{6} \times(4+6+8)=12 \mathrm{Vm}
\end{aligned}
$$

Download the new ALLEN app \& enroll for Online Programs

56. A liquid column of height 0.04 cm balances excess pressure of soap bubble of certain radius. If density of liquid is $8 \times 10^{3} \mathrm{~kg} \mathrm{~m}^{-3}$ and surface tension of soap solution is $0.28 \mathrm{Nm}^{-1}$, then diameter of the soap bubble is \qquad cm.
(if $g=10 \mathrm{~ms}^{-2}$)
Ans. (7)
Sol. $\rho g h=\frac{4 \mathrm{~S}}{\mathrm{R}}$
$\Rightarrow \mathrm{R}=\frac{4 \times 0.28}{8 \times 10^{3} \times 10 \times 4 \times 10^{-4}}$
$\Rightarrow \frac{0.28}{8} \mathrm{~m}=\frac{28}{8} \mathrm{~cm}$
$\Rightarrow \mathrm{R}=3.5 \mathrm{~cm}$
Diameter $=7 \mathrm{~cm}$
57. A closed and an open organ pipe have same lengths. If the ratio of frequencies of their seventh overtones is $\left(\frac{a-1}{a}\right)$ then the value of a is \qquad .

Ans. (16)
Sol. For closed organ pipe
$\mathrm{f}_{\mathrm{c}}=(2 \mathrm{n}+1) \frac{\mathrm{v}}{4 \ell}=\frac{15 \mathrm{v}}{4 \ell}$
For open organ pipe
$\mathrm{f}_{\mathrm{o}}=(\mathrm{n}+1) \frac{\mathrm{v}}{2 \ell}=\frac{8 \mathrm{v}}{2 \ell}$
$\frac{\mathrm{f}_{\mathrm{c}}}{\mathrm{f}_{\mathrm{o}}}=\frac{15}{16}=\frac{\mathrm{a}-1}{\mathrm{a}}$
$\Rightarrow \mathrm{a}=16$
58. Three vectors $\overrightarrow{\mathrm{OP}}, \overrightarrow{\mathrm{OQ}}$ and $\overrightarrow{\mathrm{OR}}$ each of magnitude A are acting as shown in figure. The resultant of the three vectors is $A \sqrt{x}$. The value of x is \qquad -.

Ans. (3)

Sol.

$\overrightarrow{\mathrm{R}}=\left(A+\frac{A}{\sqrt{2}}\right) \hat{\mathrm{i}}+\left(A-\frac{A}{\sqrt{2}}\right) \hat{\mathrm{j}}$
$|\vec{R}|=\sqrt{\left(A+\frac{A}{\sqrt{2}}\right)^{2}+\left(A-\frac{A}{\sqrt{2}}\right)^{2}}=\sqrt{3} A$
59. A parallel beam of monochromatic light of wavelength 600 nm passes through single slit of 0.4 mm width. Angular divergence corresponding to second order minima would be \qquad $\times 10^{-3} \mathrm{rad}$.

Ans. (6)
Sol. $\sin \theta \simeq \theta \simeq \frac{2 \lambda}{b}$
$=\frac{2 \times 600 \times 10^{-9}}{4 \times 10^{-4}}=3 \times 10^{-3} \mathrm{rad}$
Total divergence $=(3+3) \times 10^{-3}=6 \times 10^{-3} \mathrm{rad}$
60. In an alpha particle scattering experiment distance of closest approach for the α particle is $4.5 \times 10^{-14} \mathrm{~m}$. If target nucleus has atomic number 80, then maximum velocity of α-particle is \qquad $\times 10^{5}$ m / s approximately.
$\left(\frac{1}{4 \pi \epsilon_{0}}=9 \times 10^{9}\right.$ SI unit, mass of α particle $=$
$6.72 \times 10^{-27} \mathrm{~kg}$)
Ans. (156)
Sol. $v=\sqrt{\frac{4 \mathrm{KZe}^{2}}{\mathrm{mr}_{\text {min }}}}$
$=\sqrt{\frac{4 \times 9 \times 10^{9} \times 80}{6.72 \times 10^{-27} \times 4.5 \times 10^{-14}}} \times 1.6 \times 10^{-19}$
$=9.759 \times 10^{25} \times 1.6 \times 10^{-19}$
$=156 \times 10^{5} \mathrm{~m} / \mathrm{s}$

