## FINAL JEE-MAIN EXAMINATION - APRIL, 2024

(Held On Tuesday 09th April, 2024)
TIME : 3: 00 PM to 6: 00 PM

## PHYSICS

## SECTION-A

31. A nucleus at rest disintegrates into two smaller nuclei with their masses in the ratio of $2: 1$. After disintegration they will move :-
(1) In opposite directions with speed in the ratio of 1:2 respectively
(2) In opposite directions with speed in the ratio of 2:1 respectively
(3) In the same direction with same speed.
(4) In opposite directions with the same speed.

Ans. (1)
Sol. By conservation of momentum
$\mathrm{p}_{\mathrm{i}}=\mathrm{p}_{\mathrm{f}}$
$\mathrm{O}=\mathrm{m}_{1} \mathrm{u}_{1}+\mathrm{m}_{2} \mathrm{u}_{2}$
$\frac{\mathrm{u}_{1}}{\mathrm{u}_{2}}=-\left[\frac{1}{2}\right]$ as $\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{2}{1}$
move in opposite direction with speed ratio $1: 2$
32. The following figure represents two biconvex lenses $L_{1}$ and $L_{2}$ having focal length 10 cm and 15 cm respectively. The distance between $\mathrm{L}_{1} \& \mathrm{~L}_{2}$ is :

(1) 10 cm
(2) 15 cm
(3) 25 cm
(4) 35 cm

Ans. (3)
Sol.

$\mathrm{D}=\mathrm{f}_{1}+\mathrm{f}_{2}=25 \mathrm{~cm}$
Paraxial parallel rays pass through focus and ray from focus of convex lens will become parallel

## TEST PAPER WITH SOLUTION

33. The temperature of a gas is $-78^{\circ} \mathrm{C}$ and the average translational kinetic energy of its molecules is K . The temperature at which the average translational kinetic energy of the molecules of the same gas becomes 2 K is :
(1) $-39^{\circ} \mathrm{C}$
(2) $117^{\circ} \mathrm{C}$
(3) $127^{\circ} \mathrm{C}$
(4) $-78^{\circ} \mathrm{C}$

Ans. (2)
Sol. $K . E=\frac{\mathrm{nf}_{1} \mathrm{RT}}{2}$
$\mathrm{T}_{\mathrm{i}}=-78^{\circ} \mathrm{C} \rightarrow 273+\left[-78^{\circ} \mathrm{C}\right]=195 \mathrm{~K}$
K.E $\propto$ T

To double the K.E energy temp also
become double
$\mathrm{T}_{\mathrm{f}}=390 \mathrm{~K}$
$\mathrm{T}_{\mathrm{f}}=117^{\circ} \mathrm{C}$
34. A hydrogen atom in ground state is given an energy of 10.2 eV . How many spectral lines will be emitted due to transition of electrons?
(1) 6
(2) 3
(3) 10
(4) 1

Ans. (4)
Sol. Hydrogen will be in first excited state therefore it will emit one spectral line corresponding to transition b/w energy level 2 to 1
35. The magnetic field in a plane electromagnetic wave is $\mathrm{B}_{\mathrm{y}}=\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5\right.$ $\left.\times 10^{11} \mathrm{t}\right) \mathrm{T}$. The corresponding electric field will be
(1) $\mathrm{E}_{\mathrm{y}}=1.17 \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
(2) $\mathrm{E}_{\mathrm{Z}}=105 \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
(3) $\mathrm{E}_{\mathrm{Z}}=1.17 \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
(4) $E_{y}=10.5 \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$

Ans. (2)
Sol. $\mathrm{E}_{0}=\mathrm{B}_{0} \mathrm{C}$
$\mathrm{E}_{0}=3 \times 10^{8} \times\left(3.5 \times 10^{-7}\right) \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right)$
$\mathrm{E}_{0}=105 \sin \left(1.5 \times 10^{3} \mathrm{x}+0.5 \times 10^{11} \mathrm{t}\right) \mathrm{Vm}^{-1}$
Data inconsistent while calculating speed of wave
You can challenge for data.
36. A square loop of side 15 cm being moved towards right at a constant speed of $2 \mathrm{~cm} / \mathrm{s}$ as shown in figure. The front edge enters the 50 cm wide magnetic field at $t=0$. The value of induced emf in the loop at $\mathrm{t}=10 \mathrm{~s}$ will be :

(1) 0.3 mV
(2) 4.5 mV
(3) zero
(4) 3 mV

Ans. (3)
Sol. At $\mathrm{t}=10 \mathrm{sec}$ complete loop is in magnetic field therefore no change in flux

$\mathrm{e}=\frac{\mathrm{d} \phi}{\mathrm{dt}}=0$
e $=0$ for complete loop
37. Two cars are travelling towards each other at speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ each. When the cars are 300 m apart, both the drivers apply brakes and the cars retard at the rate of $2 \mathrm{~m} \mathrm{~s}^{-2}$. The distance between them when they come to rest is :
(1) 200 m
(2) 50 m
(3) 100 m
(4) 25 m

Ans. (3)

Sol.

$\left|\overrightarrow{\mathrm{u}}_{\mathrm{BA}}\right|=40 \mathrm{~m} / \mathrm{s}$
$\left|\vec{a}_{\mathrm{BA}}\right|=4 \mathrm{~m} / \mathrm{s}$
Apply $\left(\mathrm{v}^{2}=\mathrm{u}^{2}+2 \text { as }\right)_{\text {relative }}$
$\mathrm{O}=(40)^{2}+2(-4)(\mathrm{S})$
$\mathrm{S}=200 \mathrm{~m}$
Remaining distance $=300-200=100 \mathrm{~m}$
38. The $I-V$ characteristics of an electronic device shown in the figure. The device is :

(1) a solar cell
(2) a transistor which can be used as an amplifier
(3) a zener diode which can be used as voltage regulator
(4) a diode which can be used as a rectifier

Ans. (3)
Sol. Theory
Zener diode used as voltage regulator
39. The excess pressure inside a soap bubble is thrice the excess pressure inside a second soap bubble. The ratio between the volume of the first and the second bubble is :
(1) $1: 9$
(2) $1: 3$
(3) $1: 81$
(4) $1: 27$

Ans. (4)

Sol.

$\mathrm{P}_{1}-\mathrm{P}_{0}=\frac{4 \mathrm{~T}}{\mathrm{r}_{1}}$
$\mathrm{P}_{1}-\mathrm{P}_{0}=3\left(\mathrm{P}_{2}-\mathrm{P}_{0}\right)$
$\frac{4 \mathrm{~T}}{\mathrm{r}_{1}}=3 \frac{4 \mathrm{~T}}{\mathrm{r}_{2}}$
$\mathrm{r}_{2}=3 \mathrm{r}_{1}$
$\frac{\mathrm{V}_{1}}{\mathrm{~V}_{2}}=\frac{\frac{4}{3} \pi \mathrm{r}_{1}^{3}}{\frac{4}{3} \pi \mathrm{r}_{2}^{3}}=\frac{1}{27}$

$\mathrm{P}_{2}-\mathrm{P}_{0}=\frac{4 \mathrm{~T}}{\mathrm{r}_{2}}$
40. The de-Broglie wavelength associated with a particle of mass $m$ and energy $E$ is $\mathrm{h} / \sqrt{2 m E}$. The dimensional formula for Planck's constant is :
(1) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
(2) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
(3) $\left[\mathrm{MLT}^{-2}\right]$
(4) $\left[\mathrm{M}^{2} \mathrm{~L}^{2} \mathrm{~T}^{-2}\right]$

Ans. (2)
Sol. $\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{mE}}}$ or $\mathrm{E}=\mathrm{h} \nu$
$\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]=\mathrm{h}\left[\mathrm{T}^{-1}\right]$
$\mathrm{h}=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
41. A satellite of $10^{3} \mathrm{~kg}$ mass is revolving in circular orbit of radius 2 R . If $\frac{10^{4} \mathrm{R}}{6} J$ energy is supplied to the satellite, it would revolve in a new circular orbit of radius :
(use $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{R}=$ radius of earth)
(1) 2.5 R
(2) 3 R
(3) 4 R
(4) 6 R

Ans. (4)

Sol.


Total energy $=\frac{-\mathrm{GMm}}{2(2 \mathrm{R})}$
if energy $=\frac{10^{4} \mathrm{R}}{6}$ is added then
$\frac{-\mathrm{GMm}}{4 \mathrm{R}}+\frac{10^{4} \mathrm{R}}{6}=\frac{-\mathrm{GMm}}{2 \mathrm{r}}$
where $r$ is new radius of revolving and $g=\frac{G M}{R^{2}}$
$-\frac{\mathrm{mgR}}{4}+\frac{10^{4} \mathrm{R}}{6}=-\frac{\mathrm{mgR}^{2}}{2 \mathrm{r}}\left(\mathrm{m}=10^{3} \mathrm{~kg}\right)$
$-\frac{10^{3} \times 10 \times \mathrm{R}}{4}+\frac{10^{4} \mathrm{R}}{6}=-\frac{10^{3} \times 10 \times \mathrm{R}^{2}}{2 \mathrm{r}}$
$-\frac{1}{4}+\frac{1}{6}=-\frac{\mathrm{R}}{2 \mathrm{r}}$
$r=6 R$
42. The effective resistance between $A$ and $B$, if resistance of each resistor is $R$, will be

(1) $\frac{2}{3} R$
(2) $\frac{8 R}{3}$
(3) $\frac{5 R}{3}$
(4) $\frac{4 R}{3}$

Ans. (2)
Sol. From symmetry we can remove two middle resistance.

New circuit is

$\Downarrow$

$\Downarrow$

$\Downarrow$


OVERSEAS
43. Five charges $+\mathrm{q},+5 \mathrm{q},-2 \mathrm{q},+3 \mathrm{q}$ and -4 q are situated as shown in the figure. The electric flux due to this configuration through the surface $S$ is :

(1) $\frac{5 q}{\epsilon_{0}}$
(2) $\frac{4 q}{\epsilon_{0}}$
(3) $\frac{3 q}{\epsilon_{0}}$
(4) $\frac{q}{\epsilon_{0}}$

Ans. (2)
Sol. As per gauss theorem,
$\phi=\frac{\mathrm{q}_{\text {in }}}{\epsilon_{0}}=\frac{\mathrm{q}+(-2 \mathrm{q})+5 \mathrm{q}}{\epsilon_{0}}$
$\underline{4 q}$
$\epsilon_{0}$
44. A proton and a deutron ( $\mathrm{q}=+\mathrm{e}, m=2.0 \mathrm{u}$ ) having same kinetic energies enter a region of uniform magnetic field $\overrightarrow{\mathrm{B}}$, moving perpendicular to $\overrightarrow{\mathrm{B}}$. The ratio of the radius $r_{d}$ of deutron path to the radius $r_{p}$ of the proton path is :
(1) $1: 1$
(2) $1: \sqrt{2}$
(3) $\sqrt{2}: 1$
(4) $1: 2$

Ans. (3)
Sol. In uniform magnetic field,
$\mathrm{R}=\frac{\mathrm{m} \nu}{\mathrm{qB}}=\frac{\sqrt{2 \mathrm{~m}(\mathrm{~K} . \mathrm{E})}}{\mathrm{qB}}$
Since same K.E
$\mathrm{R} \propto \frac{\sqrt{\mathrm{m}}}{\mathrm{q}}$
$\therefore \frac{\mathrm{R}_{\text {deutron }}}{\mathrm{R}_{\text {proton }}}=\sqrt{\frac{\mathrm{m}_{\mathrm{d}}}{\mathrm{m}_{\mathrm{p}}}} \times \frac{\mathrm{q}_{\mathrm{p}}}{\mathrm{q}_{\mathrm{d}}}$
$=\sqrt{2} \times 1$
$\therefore \gamma_{\mathrm{d}}: \gamma_{\mathrm{p}}=\sqrt{2}: 1$
45. UV light of 4.13 eV is incident on a photosensitive metal surface having work function 3.13 eV . The maximum kinetic energy of ejected photoelectrons will be :
(1) 4.13 eV
(2) 1 eV
(3) 3.13 eV
(4) 7.26 eV

Ans. (2)
Sol. $\mathrm{E}_{\text {photon }}=($ work function $)+$ K. $\mathrm{E}_{\text {max }}$
$\therefore 4.13=3.13+$ K. $E_{\text {max }}$
$\therefore K^{K} E_{\max }=1 \mathrm{eV}$
46. The energy released in the fusion of 2 kg of hydrogen deep in the sun is $\mathrm{E}_{\mathrm{H}}$ and the energy released in the fission of 2 kg of ${ }^{235} \mathrm{U}$ is $\mathrm{E}_{\mathrm{U}}$. The ratio $\frac{\mathrm{E}_{\mathrm{H}}}{\mathrm{E}_{\mathrm{U}}}$ is approximately :
(Consider the fusion reaction as $4_{1}^{1} \mathrm{H}+2 \mathrm{e}^{-} \rightarrow{ }_{2}^{4} \mathrm{He}+2 \mathrm{v}+6 \gamma+26.7 \mathrm{MeV}$, energy released in the fission reaction of ${ }^{235} \mathrm{U}$ is 200 MeV per fission nucleus and $\mathrm{N}_{\mathrm{A}}=6.023 \times 10^{23}$ )
(1) 9.13
(2) 15.04
(3) 7.62
(4) 25.6

Ans. (3)
Sol. In each fusion reaction, $4{ }_{1}^{1} \mathrm{H}$ nucleus are used.
Energy released per Nuclei of ${ }_{1}^{1} \mathrm{H}=\frac{26.7}{4} \mathrm{MeV}$
$\therefore$ Energy released by 2 kg hydrogen $\left(\mathrm{E}_{\mathrm{H}}\right)$

$$
=\frac{2000}{1} \times \mathrm{N}_{\mathrm{A}} \times \frac{26.7}{4} \mathrm{MeV}
$$

\&
$\therefore$ Energy released by 2 kg Vranium ( $\mathrm{E}_{\mathrm{V}}$ )
$=\frac{2000}{235} \times \mathrm{N}_{\mathrm{A}} \times 200 \mathrm{MeV}$
So,
$\frac{E_{H}}{E_{V}}=235 \times \frac{26.7}{4 \times 200}=7.84$
$\therefore$ Approximately close to 7.62
47. A real gas within a closed chamber at $27^{\circ} \mathrm{C}$ undergoes the cyclic process as shown in figure. The gas obeys $P V^{3}=\mathrm{RT}$ equation for the path $A$ to $B$. The net work done in the complete cycle is (assuming $R=8 \mathrm{~J} / \mathrm{molK}$ ):

(1) 225 J
(2) 205 J
(3) 20 J
(4) -20 J

Ans. (2)
Sol. $\quad \mathrm{W}_{\mathrm{AB}}=\int \mathrm{PdV} \quad$ (Assuming T to be constant)

$$
\begin{aligned}
& =\int \frac{\mathrm{RTdV}}{\mathrm{~V}^{3}} \\
& =\mathrm{RT} \int_{2}^{4} \mathrm{~V}^{-3} \mathrm{dV}
\end{aligned}
$$

$$
=8 \times 300 \times\left(-\frac{1}{2}\left[\frac{1}{4^{2}}-\frac{1}{2^{2}}\right]\right)
$$

$$
=225 \mathrm{~J}
$$

$W_{B C}=P \int_{4}^{2} \mathrm{dV}=10(2-4)=-20 \mathrm{~J}$
$W_{C A}=0$
$\therefore \mathrm{W}_{\text {cycle }}=205 \mathrm{~J}$
Note : Data is inconsistent in process AB.
So needs to be challenged.
48. A 1 kg mass is suspended from the ceiling by a rope of length 4 m . A horizontal force ' F ' is applied at the mid point of the rope so that the rope makes an angle of $45^{\circ}$ with respect to the vertical axis as shown in figure. The magnitude of F is :

(1) $\frac{10}{\sqrt{2}} \mathrm{~N}$
(2) 1 N
(3) $\frac{1}{10 \times \sqrt{2}} \mathrm{~N}$
(4) 10 N

Ans. (4)
Sol. $\quad \mathrm{T}_{1} \sin 45^{\circ}=\mathrm{F}$
$\mathrm{T}_{1} \cos 45^{\circ}=\mathrm{T}_{2}=1 \times \mathrm{g}$
$\therefore \tan 45^{\circ}=\frac{\mathrm{F}}{\mathrm{g}}$
$\therefore \mathrm{F}=10 \mathrm{~N}$
49. A spherical ball of radius $1 \times 10^{-4} \mathrm{~m}$ and density $10^{5} \mathrm{~kg} / \mathrm{m}^{3}$ falls freely under gravity through a distance $h$ before entering a tank of water, If after entering in water the velocity of the ball does not change, then the value of $h$ is approximately :
(The coefficient of viscosity of water is $9.8 \times 10^{-6}$ $\mathrm{N} \mathrm{s} / \mathrm{m}^{2}$ )
(1) 2296 m
(2) 2249 m
(3) 2518 m
(4) 2396 m

Ans. (3)

Sol. $\quad \mathrm{V}_{\mathrm{T}}=\frac{2 \mathrm{~g}}{9} \frac{\mathrm{R}^{2}\left[\rho_{\mathrm{B}}-\rho_{\mathrm{L}}\right]}{\eta}$
$\Rightarrow \mathrm{V}_{\mathrm{T}}=\frac{2}{9} \times \frac{10 \times\left(10^{-4}\right)^{2}}{9.8 \times 10^{-6}}\left[10^{5}-10^{3}\right]$
$\Rightarrow \mathrm{V}_{\mathrm{T}}=224.5$
when ball fall from height (h)
$\mathrm{V}=\sqrt{2 \mathrm{gh}}$
$\mathrm{h}=\left(\frac{\mathrm{V}^{2}}{2 \mathrm{~g}}\right)=2518 \mathrm{~m}$
50.

 | A | B | E |
| :---: | :---: | :---: |
| 0 | 0 | 0 |
| 0 | 1 | X |
| 1 | 0 | Y |
| 1 | 1 | 0 |

In the truth table of the above circuit the value of X and Y are :
(1) 1,1
(2) 1,0
(3) 0,1
(4) 0,0

Ans. (1)
Sol. For x


For y


## SECTION-B

51. A straight magnetic strip has a magnetic moment of $44 \mathrm{Am}^{2}$. If the strip is bent in a semicircular shape, its magnetic moment will be $\qquad$ $\mathrm{Am}^{2}$
(Given $\pi=\frac{22}{7}$ )
Ans. (28)
Sol. Magnetic moment of straight wire $=\mathrm{mx} \ell=44$


Magnetic moment of arc
$=m \times 2 r$
$=\mathrm{m} \times \frac{2 \ell}{\pi}$
$=\frac{44 \times 2}{\pi}=\frac{88}{\pi}=28$
52. A particle of mass 0.50 kg executes simple harmonic motion under force $\mathrm{F}=-50\left(\mathrm{Nm}^{-1}\right) \mathrm{x}$. The time period of oscillation is $\frac{x}{35}$ s. The value of $x$ is
$\qquad$
(Given $\pi=\frac{22}{7}$ )
Ans. (22)
Sol. $\mathrm{m}=0.5 \mathrm{~kg}$
$\mathrm{F}=-50(\mathrm{x})$
$\mathrm{ma}=(-50 \mathrm{x})$
$0.5 \mathrm{a}=-50 \mathrm{x}$
$\mathrm{a}=(-100 \mathrm{x})$
$\mathrm{W}^{2}=100 \Rightarrow(\mathrm{w}=10)$
$\mathrm{T}=\frac{2 \pi}{10}=\left(\frac{\pi}{5}\right)=\frac{22}{7 \times 15}=\left(\frac{22}{35}\right)$
$\frac{\pi}{35}=\frac{22}{35} \Rightarrow x=22$
53. A capacitor of reactance $4 \sqrt{3} \Omega$ and a resistor of resistance $4 \Omega$ are connected in series with an ac source of peak value $8 \sqrt{2} \mathrm{~V}$. The power dissipation in the circuit is $\qquad$ W.

Ans. (4)

Sol.

$\mathrm{Z}=\sqrt{\mathrm{R}^{2}+\mathrm{X}^{2} \mathrm{~L}}$
$Z=\sqrt{4^{2}+(4 \sqrt{3})^{2}}=8 \Omega$
$\mathrm{V}_{\mathrm{rms}}=\frac{\mathrm{V}}{\sqrt{2}}=\frac{8 \sqrt{2}}{\sqrt{2}}=(8 \mathrm{~V})$
$\mathrm{I}_{\mathrm{rms}}=\frac{\mathrm{V}_{\mathrm{rms}}}{\mathrm{Z}}=\frac{8}{8}=1 \mathrm{~A}$
Power dissipated $=I^{2}{ }_{\text {rms }} \times \mathrm{R}=1 \times 4=(4 \mathrm{~W})$
54. An electric field $\overrightarrow{\mathrm{E}}=(2 x \hat{\mathrm{i}}) \mathrm{NC}^{-1}$ exists in space. A cube of side 2 m is placed in the space as per figure given below. The electric flux through the cube is $\mathrm{Nm}^{2} / \mathrm{C}$.


Ans. (16)
Sol.

$\overrightarrow{\mathrm{E}}=2 x \hat{\mathrm{i}}$
$\phi=\overrightarrow{\mathrm{E}} \cdot \overrightarrow{\mathrm{A}}$
$\phi_{\text {in }}=-4 \times 4=-16 \mathrm{Nm}^{2} / \mathrm{c}$
$\phi_{\text {out }}=8 \times 4=32 \mathrm{Nm}^{2} / \mathrm{c}$
$d_{\text {net }}=\phi_{\text {in }}+\phi_{\text {out }}=-16+32=16 \mathrm{Nm}^{2} / \mathrm{c}$
55. A circular disc reaches from top to bottom of an inclined plane of length $l$. When it slips down the plane, if takes t s. When it rolls down the plane then it takes $\left(\frac{\alpha}{2}\right)^{1 / 2} \mathrm{t} s$, where $\alpha$ is
Ans. (3)
Sol. For slipping
$\mathrm{a}=\mathrm{g} \sin \theta$
$\ell=\frac{1}{2} \mathrm{at}^{2} \Rightarrow \mathrm{t}=\sqrt{\frac{2 \ell}{\mathrm{~g} \sin \theta}}$
For rolling
$\mathrm{a}^{\prime}=\frac{\mathrm{g} \sin \theta}{1+\frac{\mathrm{k}^{2}}{\mathrm{R}^{2}}}\left[\mathrm{k}=\frac{\mathrm{R}}{\sqrt{2}}\right]$
$\Rightarrow \mathrm{a}^{\prime}=\frac{2 \mathrm{~g} \sin \theta}{3}$
$\ell=\frac{1}{2} \mathrm{a}^{\prime}\left(\mathrm{t}^{\prime}\right)^{2}$
$\Rightarrow \mathrm{t}^{\prime}=\sqrt{\frac{6 \ell}{2 \mathrm{~g} \sin \theta}}=\sqrt{\frac{\alpha}{2}} \sqrt{\frac{2 \ell}{\mathrm{~g} \sin \theta}}$
$\Rightarrow \alpha=3$
56. To determine the resistance ( R ) of a wire, a circuit is designed below, The V-I characteristic curve for this circuit is plotted for the voltmeter and the ammeter readings as shown in figure. The value of R is $\qquad$ $\Omega$.


## Download the new ALLEN app \& enroll for Online Programs



Ans. (2500)
Sol. $\quad$ Req $=\frac{10^{4} \mathrm{R}}{10^{4}+\mathrm{R}}$
$\mathrm{E}=4 \mathrm{~V}, \mathrm{I}=2 \mathrm{~mA}$

$$
\mathrm{I}=\frac{\mathrm{E}}{\operatorname{Req}} \Rightarrow 2 \times 10^{-3}=\frac{4\left(10^{4}+\mathrm{R}\right)}{10^{4} \mathrm{R}}
$$

$$
\Rightarrow 20 \mathrm{R}=40000+4 \mathrm{R}
$$

$$
16 \mathrm{R}=40000
$$

$$
\mathrm{R}=2500 \Omega
$$

57. The resultant of two vectors $\vec{A}$ and $\vec{B}$ is perpendicular to $\overrightarrow{\mathrm{A}}$ and its magnitude is half that of $\vec{B}$. The angle between vectors $\vec{A}$ and $\vec{B}$ is
$\qquad$
Ans. (150)

Sol.

$B \cos \theta=\frac{B}{2}$
$\Rightarrow \theta=60^{\circ}$
So, angle between $\overrightarrow{\mathrm{A}} \& \overrightarrow{\mathrm{~B}}$ is $90^{\circ}+60^{\circ}=150^{\circ}$
58. Monochromatic light of wavelength 500 nm is used in Young's double slit experiment. An interference pattern is obtained on a screen When one of the slits is covered with a very thin glass plate (refractive index $=1.5$ ), the central maximum is shifted to a position previously occupied by the $4^{\text {th }}$ bright fringe. The thickness of the glass-plate is
$\qquad$
Ans. (4)
Sol. $(\mu-1) \mathrm{t}=\mathrm{n} \lambda$
$(1.5-1) \mathrm{t}=4 \times 500 \times 10^{-9} \mathrm{~m}$
$\mathrm{t}=4000 \times 10^{-9} \mathrm{~m}$
$\mathrm{t}=4 \mu \mathrm{~m}$
59. A force $\left(3 x^{2}+2 x-5\right) N$ displaces a body from $\mathrm{x}=2 \mathrm{~m}$ to $\mathrm{x}=4 \mathrm{~m}$. Work done by this force is ...........J.

Ans. (58)
Sol. $W=\int_{x_{1}}^{\mathrm{x}_{2}} F d x$
$W=\int_{2}^{4}\left(3 x^{2}+2 x-5\right) d x$
$\mathrm{W}=\left[\mathrm{x}^{3}+\mathrm{x}^{2}-5 \mathrm{x}\right]_{2}^{4}$
$\mathrm{W}=[60-2] \mathrm{J}=58 \mathrm{~J}$
60. At room temperature $\left(27^{\circ} \mathrm{C}\right)$, the resistance of a heating element is $50 \Omega$. The temperature coefficient of the material is $2.4 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$. The temperature of the element, when its resistance is $62 \Omega$, is $\qquad$ ${ }^{\circ} \mathrm{C}$.
Ans. (1027)
Sol. $\quad \mathrm{R}=\mathrm{R}_{0}(1+\alpha \Delta \mathrm{T})$
$62=50\left[1+2.4 \times 10^{-4} \Delta \mathrm{~T}\right]$
$\Delta \mathrm{T}=1000^{\circ} \mathrm{C}$
$\Rightarrow \mathrm{T}-27^{\circ}=1000^{\circ} \mathrm{C}$
$\mathrm{T}=1027^{\circ} \mathrm{C}$

